
W3C RDF Working Group

JSON Syntax Options

F2F Meeting 1, Amsterdam
13-14 April 2011

Thomas Steiner, Research Scientist, Google
tomac@google.com, @tomayac

mailto:tomac@google.com
http://twitter.com/tomayac

From the group's charter

"Define and standardize a JSON Syntax for RDF [...]. The goal
is to provide an RDF serialization as complete as possible [...],
but features may be ignored and special syntax features may
be introduced if that would greatly facilitate the adoption of the
JSON encoding by the Web Application developers’
community."

http://www.w3.org/2011/01/rdf-wg-charter#scope

http://www.w3.org/2011/01/rdf-wg-charter#scope

Standing on the shoulders of giants

RDF JSON by Talis
JSON-LD by Manu Sporny
JRON by Sandro Hawke
JSON formatting in the Linked Data API
Serializing SPARQL Query Results In JSON by DAWG
JSN3 by Nathan Rixham
Flat triples approach to RDF graphs by Dominik Tomaszuk
Rdfj by Mark Birbeck
JTriples by Michael Hausenblas

http://docs.api.talis.com/platform-api/output-types/rdf-json
http://json-ld.org/
http://decentralyze.com/2010/06/04/from-json-to-rdf-in-six-easy-steps-with-jron/
http://code.google.com/p/linked-data-api/wiki/API_Formatting_Graphs#JSON_Formatting
http://www.w3.org/TR/rdf-sparql-json-res/
http://webr3.org/apps/specs/jsn3/
http://www.w3.org/2009/12/rdf-ws/papers/ws02
http://code.google.com/p/backplanejs/wiki/Rdfj
http://www.w3.org/wiki/JTriples

Sample graph

One shared sample graph with some interesting features
http://www.w3.org/2011/rdf-wg/wiki/JSON-Serialization-
Examples#Shared_Example_for_Serialization_Lineup_.
28Turtle.29

http://www.w3.org/2011/rdf-wg/wiki/JSON-Serialization-Examples#Shared_Example_for_Serialization_Lineup_.28Turtle.29
http://www.w3.org/2011/rdf-wg/wiki/JSON-Serialization-Examples#Shared_Example_for_Serialization_Lineup_.28Turtle.29
http://www.w3.org/2011/rdf-wg/wiki/JSON-Serialization-Examples#Shared_Example_for_Serialization_Lineup_.28Turtle.29

Sample graph

Artificial data set with some real-world issues:

Literals
Literals with language tags
Literals with trivial data types
Literals with non-trivial data types
Blank nodes
Lists
IRIs
Potentially colliding CURIE prefixes

Serialization lineup

See concrete serializations here:

http://www.w3.org/2011/rdf-wg/wiki/JSON-Serialization-
Examples#JSON_Serializations_Lineup

In the following overall observations of the JSON proposals.

http://www.w3.org/2011/rdf-wg/wiki/JSON-Serialization-Examples#JSON_Serializations_Lineup
http://www.w3.org/2011/rdf-wg/wiki/JSON-Serialization-Examples#JSON_Serializations_Lineup

Object-based or triple-based

Object-based

The idea is to enable a holistic view (invented syntax):

{
 "name": "Jon Doe",
 "age": 29,
 "homepage": "http://jon.ex.org/"
}

This shall allow for direct access of properties (after JSON.
parse() step):

obj.name
obj.homepage

Triple-based

The idea is to stay as close to the metal as possible (invented
syntax):

[
 {"s": "#", "p": "name", "o": "Jon Doe"},
 {"s": "#", "p": "age", "o": 29},
 {"s": "#", "p": "homepage", "o":
 "http://jon.ex.org"}
]

Findings - subjects (object-based)

Introduce subjects as a new object level:
{
 "@subject": "_:id",
 "name": "Jon Doe"
}

vs.

{
 "_:id": {
 "name": "Jon Doe"
 }
}

Findings - IRIs

Differentiate between string literals and IRIs:

"http://ex.org" vs. "<http://ex.org>"

Mostly considered unnecessary.

Findings - language tags

Differentiate between string literals in different languages:

"hi" vs. "hi@en" vs. "salut@fr"

Mostly considered necessary.

Microsyntax: "hi@en"
Value pairs: {"value": "hi", "language": "en"}
Key map: {"en": "hi"}

Findings - non-native types

Differentiate between non-native types (native JSON types are
string, number, true, false, null, object, array):

2@int vs. 2@int32 vs. 2@int64

Mostly considered necessary.

Microsyntax: "2@xsd:integer"
Value pairs: {"value": 2, "type": "xsd:integer"}
Key map: {"xsd:integer": 2}

Findings - lists

Reference lists:

{
 "knows": [{"name": "Jane"}, {"name": "Jim"}]
}

Mostly considered borderline.

Array: [{"name": "Jane"}, {"name": "Jim"}]

Findings - namespaces

Differentiate between foaf:name and ex:name:

{
 "@prefixes": {"ex": "http://ex.com/ns/1/"},
 "ex:name": "Jane"
}

Mostly considered borderline / necessary.

Prefix map: {"ex": "http://ex.com/ns/1/"}
Token map: {"name": "http://ex.com/ns/1/name"}

Full IRIs: {"http://ex.com/ns/1/name": "Jane"}
Well-known external default profile

Key take-aways

Do we need two pills? Red? Blue? Can there be one purple pill
to rule them all?

Do we need language tags?

Do we need non-native types?

Do we need the more obscure RDF features at all (in JSON)?

Do we need mappings from vanilla JSON to RDFied JSON?

Credits, contact, thanks

Most (all?) of this covered before (and better) by Nathan
Rixham in http://www.w3.org/2011/rdf-
wg/wiki/JSON_Syntax_Options#JSON_Syntax_Options

Red pill blue pill image "fair use" of a still frame from the movie
The Matrix

Some help from Hannes Mühleisen (@hfmuehleisen)

Thomas Steiner tomac@google.com, @tomayac

http://www.w3.org/2011/rdf-wg/wiki/JSON_Syntax_Options#JSON_Syntax_Options
http://www.w3.org/2011/rdf-wg/wiki/JSON_Syntax_Options#JSON_Syntax_Options
http://twitter.com/hfmuehleisen
mailto:tomac@google.com
http://twitter.com/tomayac

