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1. Introduction
This paper continues the work begun in [Constructive mapping semantics].  That paper proposed 
a formal semantics for SPARQL starting from a tree representation of a SPARQL query.  This 
paper proposes a technique for converting SPARQL syntax to such a tree. However, because my 
understanding of SPARQL continues to evolve, the trees proposed here are not precisely the same 
as the ones presumed in [Constructive mapping semantics]. 

2. Terminology
It will be convenient to have some terminology to talk about character strings that match BNF.  I 
cite the following definitions from [SQL/Framework] Subclause 6.3.3.1 “Syntactic containment”:

Let <A>, <B>, and <C> be syntactic elements; let A1, B1, and C1 respectively be 
instances of <A>, <B>, and <C>.

In a Format, <A> is said to immediately contain <B> if <B> appears on the right-
hand side of the BNF production rule for <A>. An <A> is said to contain or 
specify <C> if <A> immediately contains <C> or if <A> immediately contains a 
<B> that contains <C>.



- 2 of 13 -

Converting SPARQL syntax to trees

In SQL language, A1 is said to immediately contain B1 if <A> immediately 
contains <B> and B1 is part of the text of A1. A1 is said to contain or specify C1 if 
A1 immediately contains C1 or if A1 immediately contains B1 and B1 contains C1. 
If A1 contains C1, then C1 is contained in A1 and C1 is specified by A1.

A1 is said to contain B1 with an intervening <C> if A1 contains B1 and A1 contains 
an instance of <C> that contains B1. A1 is said to contain B1 without an 
intervening <C> if A1 contains B1 and A1 does not contain an instance of <C> that 
contains B1.

A1 simply contains B1 if A1 contains B1 without an intervening instance of <A> or 
an intervening instance of <B>.

Adapting these definitions of “contain”, “immediately contain” and “simply contain” to SPARQL 
BNF and language is straightforward.  Usage in the SQL standard has evolved away from the 
word “specify”, so I will use “contain” exclusively. Also, experience with the SQL standard 
shows that rules written using immediate containment are fragile, because rearranging the BNF 
can break immediate containment.  In contrast, simple containment has been found to be rather 
robust and immune to changes in the BNF.  Consequently, when a rule might be written with 
either immediate or simple containment, I prefer simple containment.  However, cases arise in 
which only immediate containment is sufficiently precise.

3. Transformation of syntax to trees
To transform a SPARQL query to a tree, I proceed by recursion on substrings that match BNF 
nonterminals.  If Q is a query string, let Tree(Q) denote the tree representation of Q.

3.1 Removing abbreviations
A query is processed by first removing the following abbreviated syntax:

1. Abbreviations for prefixes, as explained in [rq24] 3.1.1 “Syntax for IRIs”.

2. Abbreviations for blank nodes, as explained in [rq24] 3.1.4 “Syntax for blank nodes”.  As 
a result, the only strings matching rule [66] BlankNode actually match rule [70] 
BLANK_NODE_LABEL.

3. Abbreviations for triple patterns, as explained in [rq24] 3.2 “Syntax for triple patterns”.  
As a result, predicate-object lists, object lists, and RDF collections are expanded fully.

4. The keyword “a” is replaced by the full IRI, as explained in [rq24] 3.2.4 “rdf:type”.  

3.2 WhereClause
Let WC be a character string conforming to rule [13] WhereClause:
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[13] WhereClause ::= 'WHERE'? GroupGraphPattern

Let GGP be the GroupGraphPattern simply contained in WC.  Then Tree(WC) = Tree(GGP), i.e., 
the tree representation of WC is the same as the tree representation of GGP.

3.3 GroupGraphPattern, GraphPattern, and OptionalGraphPattern
GroupGraphPattern is defined by rule [19]:

[19] GroupGraphPattern ::= '{' GraphPattern '}'

3.3.1  Issues related to GroupGraphPattern

When defining the tree of a GroupGraphPattern, I believe there are two open issues that must be 
addressed:

1. Lee Feigenbaum raised the question, what is the scope of  FILTER.  The thread began with 
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006JulSep/0186.html .  I personally 
prefer the answer posed in the last paragraph of 
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006JulSep/0228.html , that the scope 
of a FILTER is the GroupGraphPattern delimited by the nearest curly braces containing 
the FILTER. This paper implements that proposal. 

2. First operand of OPTIONAL.  This issue was first raised in my first paper [First attempt], 
which was attached to 
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006AprJun/0170.html .  

Andy Seaborne in 
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006AprJun/0175.html
proposed that the best way to identify the first operand of OPTIONAL is to 
rearrange the grammar, so that rule [19] becomes

[19’] GroupGraphPattern ::= 
'{' GraphPattern 
    ( ( OptionalGraphPattern ('.')? )+ GraphPattern )?
'}'

and rule [23] becomes

[23’] GraphPatternNotTriples ::=
GroupOrUnionGraphPattern | GraphGraphPattern

I initially embraced this solution; however, I now believe that it is not equivalent to 
the current grammar.  For example, it will not recognize this query:

WHERE { ?x :y :z OPTIONAL { ?x :u :v }
        ?x :y :z OPTIONAL { ?x :r :s } }

Therefore the best way to identify the first operand of an OPTIONAL appears to 
be in 
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http://lists.w3.org/Archives/Public/public-rdf-dawg/2006AprJun/0174.html .  The 
proposal in this paper implements that algorithm.

3.3.2  Stage 1 analysis of GroupGraphPattern

GroupGraphPattern references rule [20] GraphPattern: 

[20] GraphPattern ::= FilteredBasicGraphPattern
( GraphPatternNotTriples '.'? GraphPattern )?

This rule involves a recursion on the right, which can be replaced by an equivalent iteration:

[20’] GraphPattern ::= FilteredBasicGraphPattern
( GraphPatternNotTriples '.'? 
  FilteredBasicGraphPattern )*

Let GGP be a GroupGraphPattern, and let GP be the GraphPattern simply contained in GGP.  
Using rule [20’] to parse GP, let n be the number of iterations of the final “star” quantifier; then n 
is the number of GraphPatternNotTriples simply contained in GP, and n+1 is the number of Fil-
teredBasicGraphPatterns simply contained in GP.  Let NT1, . . ., NTn be the GraphPatternNotTri-
ples, and let FBGP1, . . . , FBGPn+1 be the FilteredBasicGraphPatterns simply contained in GP.  
Thus GGP is

'{' FBGP1 NT1 FBGP2 . . . NTn FBGPn+1 '}'

3.3.3  Stage 2: pulling out FILTERs

FILTERs are embedded within FilteredBasicGraphPatterns.  As explained under issue #1 above, I 
think that the scope of a FILTER should be a GroupGraphPattern.  Consequently it will be neces-
sary when building the tree for a GroupGraphPattern to reach down into the FilteredBasicGraph-
Patterns and pull out the FILTERs.  FilteredBasicGraphPattern is defined by rule [21]:

[21] FilteredBasicGraphPattern ::= BlockOfTriples? 
( Constraint '.' FilteredBasicGraphPattern )? 

This rule also has recursion on the right, which can be replaced by an equivalent iteration:

[21’] FilteredBasicGraphPattern ::= BlockOfTriples? 
( Constraint '.' BlockOfTriples )* 

Let k be the number of Constraints simply contained in GP.  Let C1, . . ., Ck be the Constraints 
simply contained in GP.  (This approach is simpler than resorting to double subscripts to drill 
down to Constraints within FilteredBasicGraphPatterns.)  
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To begin the construction of Tree(GGP), we can collect all the Constraints as children of a 
GROUP node, like this:   

Each FilteredBasicGraphPattern FBGPi can be processed as explained later to produce a tree  
Tree(FBGPi).  These trees do not contain the trees for any FILTERs, which have conceptually 
been pulled out and promoted to be immediate children of the GROUP node, as shown above.

3.3.4  Stage 3: handling concatenated OPTIONALs

If n = 0 then the final tree for GGP is Tree(GGP) shown below:   

If n > 0, then it is possible that one or more of NTi is an OptionalGraphPattern; thus we encounter 
the need to address issue #2 above.  The solution is rather messy because it is possible to trans-
form into deep trees.  For example

{ { ?x :v1 :n1 } UNION { ?y :v2 :n2 } 
  OPTIONAL { ?x :v3 :n3 } OPTIONAL { ?y :v4 :n4 } }

         GROUP

                                        Tree(C1)      . . .        Tree(Ck)

         GROUP

           Tree(FBGP1)        Tree(C1)      . . .        Tree(Ck)
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The objective is that this example should transform to this tree:  

In this example, 

n = 3, 

FBGP1 is empty, 

NT1 is { ?x :v1 :n1} UNION { ?y :v2 :n2 },

FBGP2 is empty,

NT2 is OPTIONAL { ?x :v3 :n3 },

FBGP3 is empty,

NT3 is OPTIONAL { ?y :v4 :n4 },

FBGP4 is empty. 

The following algorithm constructs a sequence of trees, CHILDREN.  The algorithm proceeds by 
iterating on variable i, starting with i = 1 and running through i = n.  The algorithm operates by 
appending a tree to CHILDREN, or by deleting the last element of CHILDREN.  Initially CHIL-
DREN consists of a single tree, CHILDREN = { Tree (FBGP1) }.  At the conclusion of the algo-
rithm, CHILDREN will consist of the desired immediate children of the GROUP node 
corresponding to GGP.  

For each i between 1 and n, perform the following rules:  

GROUP

OPTIONAL

OPTIONAL                     GROUP

UNION                  GROUP             TRIPLE

GROUP           GROUP                    TRIPLE            ?y   :v4  :n4

TRIPLE            TRIPLE                  ?x  :v3  :n3

?x   :v1   :n1       ?y   :v2   :n2
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1) If NTi is a GroupOrUnionGraphPattern or a GraphGraphPattern, then append 
Tree(NTi) to CHILDREN.

2) If NTi is an OptionalGraphPattern, then let SGP be the GroupGraphPattern 
simply contained in NTi.  (SGP for “supplementary graph pattern”, my 
proposed term for the second operand of an OPTIONAL.)

a) If i = 1, then let Treei be the following tree:      

Remove Tree(FBGP1), which is the only element of CHILDREN, from 
CHILDREN, and insert Tree1.

b) If i > 1, then:

i) If the last element of CHILDREN is EMPTY (this element is 
Tree(FBGPi)), then the penultimate element of CHILDREN is Treei-1.  
Construct the following tree:    

Remove the last two elements from CHILDREN (i.e., Treei-1 and the 
EMPTY that is Tree(FBGPi-1)) and insert Treei.

ii) Otherwise, construct the following tree:    

Remove the last element from CHILDREN (i.e., Tree(FBGPi) and 
insert Treei.

         OPTIONAL

                Tree(FBGP1)                                        Tree(SGP)

         OPTIONAL

                       Treei-1                                        Tree(SGP)

         OPTIONAL

                       Tree(FBGPi)                               Tree(SGP)
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3) Append Tree (FBGPi+1) to CHILDREN.

After performing the preceding rules for all i between 1 and n, CHILDREN contains the desired 
immediate children of the GROUP node.  Let CHILDREN = {Tr1, . . ., Trm}.  Then Tree(GGP) is 
the following tree:      

3.4 FilteredBasicGraphPattern
Let FBGP be a character string conforming to rule [21] FilteredBasicGraphPattern:

[21] FilteredBasicGraphPattern ::= BlockOfTriples? 
( Constraint '.' FilteredBasicGraphPattern )? 

As explained above, we can remove the recursion by using this rule instead:

[21’] FilteredBasicGraphPattern ::= BlockOfTriples? 
( Constraint '.' BlockOfTriples )* 

All Constraints have already been handled by pulling them up to the GroupGraphPattern.  What 
remains is zero or more BlockOfTriples.  Let n be the number of BlockOfTriples simply con-
tained in FBGP. 

If n = 0, then Tree(FBGP) consists of a single node, labeled EMPTY.

Otherwise let the BlockOfTriples be BOT1, . . . , BOTn.  Then Tree(FBGP) is     

3.5 BlockOfTriples
Let BOT be a string conforming to rule [22] BlockOfTriples

[22] BlockOfTriples ::= TriplesSameSubject 
( '.' TriplesSameSubject? )*

Because all abbreviations have been removed (see Section 3.1 above),  BOT also conforms to 
these rules:

         GROUP

           Tr1        Tr2     . . .     Trm       Tree(C1)      . . .        Tree(Ck)

         JOIN

           Tree (BOT1)    Tree (BOT2)   . . .    Tree (BOTn) 
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[22a] BasicGraphPattern ::= 
TriplePattern ( '.' TriplePattern )* 

[22b] TriplePattern ::= Subject Verb Object

[22c] Subject ::= VarOrTerm

[36] Verb ::= VarOrIRIref | 'a'

[NOTE to the proposal reader: actually, the case ‘a’ 
cannot arise once abbreviations are removed, so we 
could replace rule [36] with something simpler.]

[22d] Object ::= VarOrTerm

Let BOT consist of n TriplePattern’s, TP1, . . . , TPn.  Tree(BOT) is shown below:

For all i, let the Subject, Verb and Object simply contained in TPi be Si, Vi and Oi, respectively.  
Tree(TPi) is shown below:

3.6 Constraint
Constraint is defined by rule [27]:

[27] Constraint ::= 
'FILTER' ( BrackettedExpression | BuiltInCall 
| FunctionCall )

             JOIN

       Tree(TP1)        Tree(TP2)           . . .               Tree(TPn)

TRIPLE

       Tree(Si)                Tree(Vi)                   Tree(Oi)
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Let C be a Constraint.  Let E be the simply contained BracketedExpression, BuiltInCall or Func-
tionCall.  The tree Tree(C) is shown below:     

3.6.1  BracketedExpression, Expression and ConditionalOrExpression

BracketedExpression is defined by rule [56]:

[56] BracketedExpression ::= '(' Expression ')'

The tree of a BracketedExpression is the same as the tree of the immediately contained Expres-
sion.

Expression is defined by rule [46]:

[46] Expression ::= ConditionalOrExpression

The tree of an Expression is the same as the tree of the immediately contained ConditionalOrEx-
pression.

ConditionalOrExpression is defined by rule [47]:

[47] ConditionalOrExpression ::=
ConditionalAndExpression 
( '||' ConditionalAndExpression )*

Let COE be a CondtionalOrExpression.  Let n be the number of simply contained ConditionalAn-
dExpressions.  Let these ConditionalAndExpressions be COA1, . . . , COAn.  If n = 1, then 
Tree(COE) = Tree(COA1).  If n > 1, then the tree Tree(COE) is shown below:    

3.6.2  ConditionalAndExpression

ConditionalAndExpression is defined by rule [48]:

[48] ConditionalAndExpression ::=
ValueLogical ( '&&' ValueLogical )*

FILTER

                                    Tree(E)

             OR

       Tree(COA1)       Tree(COA2)           . . .         Tree(COAn)
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Let COA be a CondtionalAndExpression.  Let n be the number of simply contained ValueLogi-
cals.  Let these ValueLogicals be VL1, . . . , VLn.  If n = 1, then Tree(COA) = Tree(VL1).  If n > 1, 
then the tree Tree(COA) is shown below:     

3.6.3  ValueLogical and RelationalExpression

ValueLogical is defined by rule [49]:

[49] ValueLogical ::= RelationalExpression

The tree of a ValueLogical is the same as the tree of the simply contained RelationalExpression.

RelationalExpression is defined by rule [50]:

[50] RelationalExpression   ::=   
NumericExpression 
(   '=' NumericExpression 
  | '!=' NumericExpression 
  | '<' NumericExpression 
  | '>' NumericExpression 
  | '<=' NumericExpression 
  | '>=' NumericExpression )? 

There are two cases:

1. If RelationalExpression immediately contains only one NumericExpression, then the tree 
of the RelationalExpression is the same as the tree of the NumericExpression.

2. If RelationalExpression immediately contains two NumericExpressions, then let them be 
NE1 and NE2, and let OP be the operator ('=', '!=', '<', '>', '<=', or '>=') immediately con-
tained in the RelationalExpression.  The tree of RelationalExpression is shown below:    

Note that OP is not a keyword in the above tree; it is a symbol denoting one of the 
relational operator symbols '=', etc.

             AND

       Tree(VL1)         Tree(VL2)         . . .         Tree(VLn)

          OP

       Tree(NE1)                                               Tree(NE2)



- 12 of 13 -

Converting SPARQL syntax to trees

3.6.4  Etc. for the rest of the expression syntax

The main point in continuing to flesh this out would be to reach function invocations, including 
especially BOUND, because there are semantic issues about the treatment of unbound variables in 
FILTER.  An unbound variable in an invocation of BOUND is not an error.  Andy Seaborne pro-
posed that whether an unbound variable in an invocation of other functions is an error or not 
should be left to the function definition (I have not looked up the email message).  Otherwise an 
unbound variable is an error. 

3.7 GraphPatternNotTriples
GraphPatternNotTriples is defined by rule [23]:

[23] GraphPatternNotTriples ::= OptionalGraphPattern 
| GroupOrUnionGraphPattern | GraphGraphPattern

OptionalGraphPattern has already been handled with GroupGraphPattern.  Otherwise, the tree 
representation of a GraphPatternNotTriples is the same as the tree representation of the simply 
contained GroupOrUnionGraphPattern or GraphGraphPattern.

3.8 GroupOrUnionGraphPattern
Let GOUGP be a character string conforming to rule [26] GroupOrUnionGraphPattern:

[26] GroupOrUnionGraphPattern ::= GroupGraphPattern
( 'UNION' GroupGraphPattern )*

There are two cases:

1. GOUGP does not immediately contain UNION.  In that case the tree representation of 
GOUGP is the same as the tree representation of the only immediately contained 
GroupGraphPattern.

2. GOUGP immediately contains UNION.  Let n be the number of GroupGraphPattern’s 
immediately contained in GOUGP; let GGP1, . . . , GGPn be these GroupGraphPattern’s.  
Tree(GOUGP) is shown below:  

3.9 GraphGraphPattern
Let GGP be a character string conforming to rule [25] GraphGraphPattern:

           UNION

       Tree(GGP1)        Tree(GGP2)           . . .          Tree(GGPn)
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[25] GraphGraphPattern ::=
'GRAPH' VarOrBlankNodeOrIRIref GroupGraphPattern

Let VBNI be the VarOrBlankNodeOrIRIref, and let P be the GroupGraphPattern.  Tree(GGP) is 
shown below:  

- End of paper -

GRAPH

          VBNI                                          Tree(P)
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