
- 1 of 13 -

Title: Converting SPARQL syntax to trees

Author: Fred Zemke
Date: September 28, 2006

References
[SPARQL CR] “SPARQL query language for RDF”, Candidate Recommendation,

http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/

[rq24] “SPARQL query language for RDF”, Editor’s draft,
http://www.w3.org/2001/sw/DataAccess/rq23/24
(the version I printed was dated 2006/06/12)

[First attempt] Fred Zemke, “An attempt at a formal semantics for SPARQL”

[Constructive/destructive]Fred Zemke, “SPARQL semantics: constructive or destructive?”

[Constructive mapping semantics]Fred Zemke, “Constructive mapping semantics for SPARQL”

[SQL/Framework] Jim Melton (ed), “ISO International Standard (IS) Database Language SQL
- Part 1: SQL/Framework”, ISO/IEC 9075-2:2003

1. Introduction
This paper continues the work begun in [Constructive mapping semantics]. That paper proposed
a formal semantics for SPARQL starting from a tree representation of a SPARQL query. This
paper proposes a technique for converting SPARQL syntax to such a tree. However, because my
understanding of SPARQL continues to evolve, the trees proposed here are not precisely the same
as the ones presumed in [Constructive mapping semantics].

2. Terminology
It will be convenient to have some terminology to talk about character strings that match BNF. I
cite the following definitions from [SQL/Framework] Subclause 6.3.3.1 “Syntactic containment”:

Let <A>, , and <C> be syntactic elements; let A1, B1, and C1 respectively be
instances of <A>, , and <C>.

In a Format, <A> is said to immediately contain if appears on the right-
hand side of the BNF production rule for <A>. An <A> is said to contain or
specify <C> if <A> immediately contains <C> or if <A> immediately contains a
 that contains <C>.

- 2 of 13 -

Converting SPARQL syntax to trees

In SQL language, A1 is said to immediately contain B1 if <A> immediately
contains and B1 is part of the text of A1. A1 is said to contain or specify C1 if
A1 immediately contains C1 or if A1 immediately contains B1 and B1 contains C1.
If A1 contains C1, then C1 is contained in A1 and C1 is specified by A1.

A1 is said to contain B1 with an intervening <C> if A1 contains B1 and A1 contains
an instance of <C> that contains B1. A1 is said to contain B1 without an
intervening <C> if A1 contains B1 and A1 does not contain an instance of <C> that
contains B1.

A1 simply contains B1 if A1 contains B1 without an intervening instance of <A> or
an intervening instance of .

Adapting these definitions of “contain”, “immediately contain” and “simply contain” to SPARQL
BNF and language is straightforward. Usage in the SQL standard has evolved away from the
word “specify”, so I will use “contain” exclusively. Also, experience with the SQL standard
shows that rules written using immediate containment are fragile, because rearranging the BNF
can break immediate containment. In contrast, simple containment has been found to be rather
robust and immune to changes in the BNF. Consequently, when a rule might be written with
either immediate or simple containment, I prefer simple containment. However, cases arise in
which only immediate containment is sufficiently precise.

3. Transformation of syntax to trees
To transform a SPARQL query to a tree, I proceed by recursion on substrings that match BNF
nonterminals. If Q is a query string, let Tree(Q) denote the tree representation of Q.

3.1 Removing abbreviations
A query is processed by first removing the following abbreviated syntax:

1. Abbreviations for prefixes, as explained in [rq24] 3.1.1 “Syntax for IRIs”.

2. Abbreviations for blank nodes, as explained in [rq24] 3.1.4 “Syntax for blank nodes”. As
a result, the only strings matching rule [66] BlankNode actually match rule [70]
BLANK_NODE_LABEL.

3. Abbreviations for triple patterns, as explained in [rq24] 3.2 “Syntax for triple patterns”.
As a result, predicate-object lists, object lists, and RDF collections are expanded fully.

4. The keyword “a” is replaced by the full IRI, as explained in [rq24] 3.2.4 “rdf:type”.

3.2 WhereClause
Let WC be a character string conforming to rule [13] WhereClause:

- 3 of 13 -

Converting SPARQL syntax to trees

[13] WhereClause ::= 'WHERE'? GroupGraphPattern

Let GGP be the GroupGraphPattern simply contained in WC. Then Tree(WC) = Tree(GGP), i.e.,
the tree representation of WC is the same as the tree representation of GGP.

3.3 GroupGraphPattern, GraphPattern, and OptionalGraphPattern
GroupGraphPattern is defined by rule [19]:

[19] GroupGraphPattern ::= '{' GraphPattern '}'

3.3.1 Issues related to GroupGraphPattern

When defining the tree of a GroupGraphPattern, I believe there are two open issues that must be
addressed:

1. Lee Feigenbaum raised the question, what is the scope of FILTER. The thread began with
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006JulSep/0186.html . I personally
prefer the answer posed in the last paragraph of
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006JulSep/0228.html , that the scope
of a FILTER is the GroupGraphPattern delimited by the nearest curly braces containing
the FILTER. This paper implements that proposal.

2. First operand of OPTIONAL. This issue was first raised in my first paper [First attempt],
which was attached to
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006AprJun/0170.html .

Andy Seaborne in
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006AprJun/0175.html
proposed that the best way to identify the first operand of OPTIONAL is to
rearrange the grammar, so that rule [19] becomes

[19’] GroupGraphPattern ::=
'{' GraphPattern
 ((OptionalGraphPattern ('.')?)+ GraphPattern)?
'}'

and rule [23] becomes

[23’] GraphPatternNotTriples ::=
GroupOrUnionGraphPattern | GraphGraphPattern

I initially embraced this solution; however, I now believe that it is not equivalent to
the current grammar. For example, it will not recognize this query:

WHERE { ?x :y :z OPTIONAL { ?x :u :v }
 ?x :y :z OPTIONAL { ?x :r :s } }

Therefore the best way to identify the first operand of an OPTIONAL appears to
be in

- 4 of 13 -

Converting SPARQL syntax to trees

http://lists.w3.org/Archives/Public/public-rdf-dawg/2006AprJun/0174.html . The
proposal in this paper implements that algorithm.

3.3.2 Stage 1 analysis of GroupGraphPattern

GroupGraphPattern references rule [20] GraphPattern:

[20] GraphPattern ::= FilteredBasicGraphPattern
(GraphPatternNotTriples '.'? GraphPattern)?

This rule involves a recursion on the right, which can be replaced by an equivalent iteration:

[20’] GraphPattern ::= FilteredBasicGraphPattern
(GraphPatternNotTriples '.'?
 FilteredBasicGraphPattern)*

Let GGP be a GroupGraphPattern, and let GP be the GraphPattern simply contained in GGP.
Using rule [20’] to parse GP, let n be the number of iterations of the final “star” quantifier; then n
is the number of GraphPatternNotTriples simply contained in GP, and n+1 is the number of Fil-
teredBasicGraphPatterns simply contained in GP. Let NT1, . . ., NTn be the GraphPatternNotTri-
ples, and let FBGP1, . . . , FBGPn+1 be the FilteredBasicGraphPatterns simply contained in GP.
Thus GGP is

'{' FBGP1 NT1 FBGP2 . . . NTn FBGPn+1 '}'

3.3.3 Stage 2: pulling out FILTERs

FILTERs are embedded within FilteredBasicGraphPatterns. As explained under issue #1 above, I
think that the scope of a FILTER should be a GroupGraphPattern. Consequently it will be neces-
sary when building the tree for a GroupGraphPattern to reach down into the FilteredBasicGraph-
Patterns and pull out the FILTERs. FilteredBasicGraphPattern is defined by rule [21]:

[21] FilteredBasicGraphPattern ::= BlockOfTriples?
(Constraint '.' FilteredBasicGraphPattern)?

This rule also has recursion on the right, which can be replaced by an equivalent iteration:

[21’] FilteredBasicGraphPattern ::= BlockOfTriples?
(Constraint '.' BlockOfTriples)*

Let k be the number of Constraints simply contained in GP. Let C1, . . ., Ck be the Constraints
simply contained in GP. (This approach is simpler than resorting to double subscripts to drill
down to Constraints within FilteredBasicGraphPatterns.)

- 5 of 13 -

Converting SPARQL syntax to trees

To begin the construction of Tree(GGP), we can collect all the Constraints as children of a
GROUP node, like this:

Each FilteredBasicGraphPattern FBGPi can be processed as explained later to produce a tree
Tree(FBGPi). These trees do not contain the trees for any FILTERs, which have conceptually
been pulled out and promoted to be immediate children of the GROUP node, as shown above.

3.3.4 Stage 3: handling concatenated OPTIONALs

If n = 0 then the final tree for GGP is Tree(GGP) shown below:

If n > 0, then it is possible that one or more of NTi is an OptionalGraphPattern; thus we encounter
the need to address issue #2 above. The solution is rather messy because it is possible to trans-
form into deep trees. For example

{ { ?x :v1 :n1 } UNION { ?y :v2 :n2 }
 OPTIONAL { ?x :v3 :n3 } OPTIONAL { ?y :v4 :n4 } }

 GROUP

 Tree(C1) . . . Tree(Ck)

 GROUP

 Tree(FBGP1) Tree(C1) . . . Tree(Ck)

- 6 of 13 -

Converting SPARQL syntax to trees

The objective is that this example should transform to this tree:

In this example,

n = 3,

FBGP1 is empty,

NT1 is { ?x :v1 :n1} UNION { ?y :v2 :n2 },

FBGP2 is empty,

NT2 is OPTIONAL { ?x :v3 :n3 },

FBGP3 is empty,

NT3 is OPTIONAL { ?y :v4 :n4 },

FBGP4 is empty.

The following algorithm constructs a sequence of trees, CHILDREN. The algorithm proceeds by
iterating on variable i, starting with i = 1 and running through i = n. The algorithm operates by
appending a tree to CHILDREN, or by deleting the last element of CHILDREN. Initially CHIL-
DREN consists of a single tree, CHILDREN = { Tree (FBGP1) }. At the conclusion of the algo-
rithm, CHILDREN will consist of the desired immediate children of the GROUP node
corresponding to GGP.

For each i between 1 and n, perform the following rules:

GROUP

OPTIONAL

OPTIONAL GROUP

UNION GROUP TRIPLE

GROUP GROUP TRIPLE ?y :v4 :n4

TRIPLE TRIPLE ?x :v3 :n3

?x :v1 :n1 ?y :v2 :n2

- 7 of 13 -

Converting SPARQL syntax to trees

1) If NTi is a GroupOrUnionGraphPattern or a GraphGraphPattern, then append
Tree(NTi) to CHILDREN.

2) If NTi is an OptionalGraphPattern, then let SGP be the GroupGraphPattern
simply contained in NTi. (SGP for “supplementary graph pattern”, my
proposed term for the second operand of an OPTIONAL.)

a) If i = 1, then let Treei be the following tree:

Remove Tree(FBGP1), which is the only element of CHILDREN, from
CHILDREN, and insert Tree1.

b) If i > 1, then:

i) If the last element of CHILDREN is EMPTY (this element is
Tree(FBGPi)), then the penultimate element of CHILDREN is Treei-1.
Construct the following tree:

Remove the last two elements from CHILDREN (i.e., Treei-1 and the
EMPTY that is Tree(FBGPi-1)) and insert Treei.

ii) Otherwise, construct the following tree:

Remove the last element from CHILDREN (i.e., Tree(FBGPi) and
insert Treei.

 OPTIONAL

 Tree(FBGP1) Tree(SGP)

 OPTIONAL

 Treei-1 Tree(SGP)

 OPTIONAL

 Tree(FBGPi) Tree(SGP)

- 8 of 13 -

Converting SPARQL syntax to trees

3) Append Tree (FBGPi+1) to CHILDREN.

After performing the preceding rules for all i between 1 and n, CHILDREN contains the desired
immediate children of the GROUP node. Let CHILDREN = {Tr1, . . ., Trm}. Then Tree(GGP) is
the following tree:

3.4 FilteredBasicGraphPattern
Let FBGP be a character string conforming to rule [21] FilteredBasicGraphPattern:

[21] FilteredBasicGraphPattern ::= BlockOfTriples?
(Constraint '.' FilteredBasicGraphPattern)?

As explained above, we can remove the recursion by using this rule instead:

[21’] FilteredBasicGraphPattern ::= BlockOfTriples?
(Constraint '.' BlockOfTriples)*

All Constraints have already been handled by pulling them up to the GroupGraphPattern. What
remains is zero or more BlockOfTriples. Let n be the number of BlockOfTriples simply con-
tained in FBGP.

If n = 0, then Tree(FBGP) consists of a single node, labeled EMPTY.

Otherwise let the BlockOfTriples be BOT1, . . . , BOTn. Then Tree(FBGP) is

3.5 BlockOfTriples
Let BOT be a string conforming to rule [22] BlockOfTriples

[22] BlockOfTriples ::= TriplesSameSubject
('.' TriplesSameSubject?)*

Because all abbreviations have been removed (see Section 3.1 above), BOT also conforms to
these rules:

 GROUP

 Tr1 Tr2 . . . Trm Tree(C1) . . . Tree(Ck)

 JOIN

 Tree (BOT1) Tree (BOT2) . . . Tree (BOTn)

- 9 of 13 -

Converting SPARQL syntax to trees

[22a] BasicGraphPattern ::=
TriplePattern ('.' TriplePattern)*

[22b] TriplePattern ::= Subject Verb Object

[22c] Subject ::= VarOrTerm

[36] Verb ::= VarOrIRIref | 'a'

[NOTE to the proposal reader: actually, the case ‘a’
cannot arise once abbreviations are removed, so we
could replace rule [36] with something simpler.]

[22d] Object ::= VarOrTerm

Let BOT consist of n TriplePattern’s, TP1, . . . , TPn. Tree(BOT) is shown below:

For all i, let the Subject, Verb and Object simply contained in TPi be Si, Vi and Oi, respectively.
Tree(TPi) is shown below:

3.6 Constraint
Constraint is defined by rule [27]:

[27] Constraint ::=
'FILTER' (BrackettedExpression | BuiltInCall
| FunctionCall)

 JOIN

 Tree(TP1) Tree(TP2) . . . Tree(TPn)

TRIPLE

 Tree(Si) Tree(Vi) Tree(Oi)

- 10 of 13 -

Converting SPARQL syntax to trees

Let C be a Constraint. Let E be the simply contained BracketedExpression, BuiltInCall or Func-
tionCall. The tree Tree(C) is shown below:

3.6.1 BracketedExpression, Expression and ConditionalOrExpression

BracketedExpression is defined by rule [56]:

[56] BracketedExpression ::= '(' Expression ')'

The tree of a BracketedExpression is the same as the tree of the immediately contained Expres-
sion.

Expression is defined by rule [46]:

[46] Expression ::= ConditionalOrExpression

The tree of an Expression is the same as the tree of the immediately contained ConditionalOrEx-
pression.

ConditionalOrExpression is defined by rule [47]:

[47] ConditionalOrExpression ::=
ConditionalAndExpression
('||' ConditionalAndExpression)*

Let COE be a CondtionalOrExpression. Let n be the number of simply contained ConditionalAn-
dExpressions. Let these ConditionalAndExpressions be COA1, . . . , COAn. If n = 1, then
Tree(COE) = Tree(COA1). If n > 1, then the tree Tree(COE) is shown below:

3.6.2 ConditionalAndExpression

ConditionalAndExpression is defined by rule [48]:

[48] ConditionalAndExpression ::=
ValueLogical ('&&' ValueLogical)*

FILTER

 Tree(E)

 OR

 Tree(COA1) Tree(COA2) . . . Tree(COAn)

- 11 of 13 -

Converting SPARQL syntax to trees

Let COA be a CondtionalAndExpression. Let n be the number of simply contained ValueLogi-
cals. Let these ValueLogicals be VL1, . . . , VLn. If n = 1, then Tree(COA) = Tree(VL1). If n > 1,
then the tree Tree(COA) is shown below:

3.6.3 ValueLogical and RelationalExpression

ValueLogical is defined by rule [49]:

[49] ValueLogical ::= RelationalExpression

The tree of a ValueLogical is the same as the tree of the simply contained RelationalExpression.

RelationalExpression is defined by rule [50]:

[50] RelationalExpression ::=
NumericExpression
('=' NumericExpression
 | '!=' NumericExpression
 | '<' NumericExpression
 | '>' NumericExpression
 | '<=' NumericExpression
 | '>=' NumericExpression)?

There are two cases:

1. If RelationalExpression immediately contains only one NumericExpression, then the tree
of the RelationalExpression is the same as the tree of the NumericExpression.

2. If RelationalExpression immediately contains two NumericExpressions, then let them be
NE1 and NE2, and let OP be the operator ('=', '!=', '<', '>', '<=', or '>=') immediately con-
tained in the RelationalExpression. The tree of RelationalExpression is shown below:

Note that OP is not a keyword in the above tree; it is a symbol denoting one of the
relational operator symbols '=', etc.

 AND

 Tree(VL1) Tree(VL2) . . . Tree(VLn)

 OP

 Tree(NE1) Tree(NE2)

- 12 of 13 -

Converting SPARQL syntax to trees

3.6.4 Etc. for the rest of the expression syntax

The main point in continuing to flesh this out would be to reach function invocations, including
especially BOUND, because there are semantic issues about the treatment of unbound variables in
FILTER. An unbound variable in an invocation of BOUND is not an error. Andy Seaborne pro-
posed that whether an unbound variable in an invocation of other functions is an error or not
should be left to the function definition (I have not looked up the email message). Otherwise an
unbound variable is an error.

3.7 GraphPatternNotTriples
GraphPatternNotTriples is defined by rule [23]:

[23] GraphPatternNotTriples ::= OptionalGraphPattern
| GroupOrUnionGraphPattern | GraphGraphPattern

OptionalGraphPattern has already been handled with GroupGraphPattern. Otherwise, the tree
representation of a GraphPatternNotTriples is the same as the tree representation of the simply
contained GroupOrUnionGraphPattern or GraphGraphPattern.

3.8 GroupOrUnionGraphPattern
Let GOUGP be a character string conforming to rule [26] GroupOrUnionGraphPattern:

[26] GroupOrUnionGraphPattern ::= GroupGraphPattern
('UNION' GroupGraphPattern)*

There are two cases:

1. GOUGP does not immediately contain UNION. In that case the tree representation of
GOUGP is the same as the tree representation of the only immediately contained
GroupGraphPattern.

2. GOUGP immediately contains UNION. Let n be the number of GroupGraphPattern’s
immediately contained in GOUGP; let GGP1, . . . , GGPn be these GroupGraphPattern’s.
Tree(GOUGP) is shown below:

3.9 GraphGraphPattern
Let GGP be a character string conforming to rule [25] GraphGraphPattern:

 UNION

 Tree(GGP1) Tree(GGP2) . . . Tree(GGPn)

- 13 of 13 -

Converting SPARQL syntax to trees

[25] GraphGraphPattern ::=
'GRAPH' VarOrBlankNodeOrIRIref GroupGraphPattern

Let VBNI be the VarOrBlankNodeOrIRIref, and let P be the GroupGraphPattern. Tree(GGP) is
shown below:

- End of paper -

GRAPH

 VBNI Tree(P)

	1. Introduction
	2. Terminology
	3. Transformation of syntax to trees
	3.1 Removing abbreviations
	3.2 WhereClause
	3.3 GroupGraphPattern, GraphPattern, and OptionalGraphPattern
	3.3.1 Issues related to GroupGraphPattern
	3.3.2 Stage 1 analysis of GroupGraphPattern
	3.3.3 Stage 2: pulling out FILTERs
	3.3.4 Stage 3: handling concatenated OPTIONALs

	3.4 FilteredBasicGraphPattern
	3.5 BlockOfTriples
	3.6 Constraint
	3.6.1 BracketedExpression, Expression and ConditionalOrExpression
	3.6.2 ConditionalAndExpression
	3.6.3 ValueLogical and RelationalExpression
	3.6.4 Etc. for the rest of the expression syntax

	3.7 GraphPatternNotTriples
	3.8 GroupOrUnionGraphPattern
	3.9 GraphGraphPattern

