
- 1 of 8 -

Title: SPARQL semantics: constructive or
destructive?

Author: Fred Zemke
Date: July 27, 2006

1. Introduction
In a private conversation, Eric Prud’hommeaux asked me if my semantics was “constructive or
destructive”. In the flow of that conversation, I never answered the question. This paper contains
my thoughts on that question.

My background is in relational databases. SQL defines the semantics of a query in two steps:

1. Form a cross product of all tables in the query.

2. Remove any rows that fail the WHERE clause.

The first step is constructive, the second step is destructive. (Note this is only the definition of the
semantics; actual query engines are free to pursue other tactics as long as they compute the same
result). The constructive step is typically expressed with very little verbiage, not much more than
I have in item 1 above. The bulk of the specification is in the destructive step. Thus we could say
that SQL’s semantics is predominantly destructive.

This is the perspective that I brought to SPARQL. From this perspective, the first step (conceptu-
ally) is to form the set (or maybe multiset) of all possible rows, then determine which ones to
retain in the answer.

Eric’s question made me ask myself if there is another way. Filtered basic graph patterns appear
amenable to the relational strategy: form the set of all mappings, and retain only those that match
the pattern and the constraints. Group graph patterns are defined as an intersection, which also
fits the “construct, then take away” mold. RDF dataset graph patterns also fit the destructive
mold readily. Union and optional graph patterns can be shoehorned into this pattern as well,
which I did in my previous draft of a formal semantics (titled “An attempt at a formal semantics
for SPARQL”, dated 14 June 2006). However, after performing the exercise in this paper, I now
believe that union and optional graph pattern matching will be better expressed using a more con-
structive model.

This paper summarizes concisely two different semantics, a destructive-centric and a construc-
tive-centric. I originally proposed the destructive-centric, and I now believe that constructive-
centric is superior. Hopefully this work will contribute to a final specification of SPARQL
semantics.

- 2 of 8 -

SPARQL semantics: constructive or destructive?

2. Preliminary terminology
I use the following terminology and symbols in both the destructive-centric and constructive-cen-
tric semantics.

I use union, intersect and minus as binary operators on sets, denoting set union, set intersection
and set difference, respectively.

Let D be the dataset specified by the zero or more FROM clauses (if there are none, I presume
some implementation-defined default dataset is used). Let D = { G0, (<u1, G1>), . . . , (<un, Gn>)
}. Let SC be the scoping set of G and let SC0, SC1, . . . , SCn be the scoping sets of G0, G1, . . . ,
Gn. Let USC = SC0 union SC1 union SC2 ... union SCn.

Let V be the set of all variables. If Q is a query or a pattern, let Var(Q) be the set of variables that
appear in Q.

A mapping is a function whose domain is a subset of V and whose codomain is USC. If S is a
mapping, let dom(S) denote the domain of S.

If S1 and S2 are mappings, we say that S1 is a restriction of S2 if S1 is a subset of S2. Equivalently,
S1 is a restriction of S2 if dom(S1) is a subset of dom(S2), and for all variables v in dom(S1),
S1(v) = S2(v).

If S2 is a mapping and U is a set of variables, then the restriction of S2 to U is the mapping S1
whose domain is (dom(S2) intersect U), and such that for all v in (dom(S2) intersect U), S1(v) =
S2(v).

In view of UNION patterns, a solution might occur more than once in a solution sequence. For
definiteness, I believe we should define precisely how many times a solution appears in a solution
sequence. Accordingly, my proposed semantics (both the destructive-centric and the construc-
tive-centric) define a cardinality with every solution. I have heard a contrary opinion that the
number of repetitions of a solution does not matter. If that view prevails, it is easy to strip the car-
dinality calculations out of my proposal.

3. Destructive-centric semantics
This is a semantics that is oriented around removing solutions from a cross product. The outline
of such a semantics is as follows:

Constructive phase

Let Q be the query of interest.

Let M be the set of all mappings whose domain is a subset of Var(Q).

Destructive phase

- 3 of 8 -

SPARQL semantics: constructive or destructive?

The destructive phase is a recursive definition based on the syntactic possibilities of SPARQL
grammar. The mappings that survive destruction are called solutions.

Filtered basic graph pattern: There seems to be a consensus that the proper scope for blank
node identifiers in the query is the filtered basic graph pattern rather than the graph pattern (see
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006AprJun/0189.html
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006AprJun/0190.html ,
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006JulSep/0005.html,
and maybe http://lists.w3.org/Archives/Public/public-rdf-dawg/2006JulSep/0007.html). By fil-
tered basic graph pattern I mean the graph pattern corresponding to syntax rule [21] FilteredBa-
sicGraphPattern. Hence I write the following proposal to clarify section 2.5.1 “General
framework”.

Let FBGP be a filtered basic graph pattern, consisting of a basic graph pattern BGP and a set of
constraints C. Let G be the graph in which FBGP will be evaluated, with scoping set SC. (If a fil-
tered basic graph pattern is not nested within an RDF dataset graph pattern, then G = G0; other-
wise G = Gi for some i.) Let S be a mapping. Let S(BGP) be the set obtained by replacing all
variables v in BGP with S(v), and replacing all blank node identifiers in BGP with blank nodes
that are distinct from all blank nodes in G.

S is a solution of FBGP if the following conditions are all true:

1. dom(S) contains Var(BGP).

Note that dom(S) does not need to contain Var(FBGP); otherwise there is no point
to the BOUND predicate, which would always be true.

2. S(BGP) does not contain a triple whose subject is a literal. (Therefore S(BGP) is an RDF
graph).

3. G entails (G union S(BGP)). Note that by design, the blank nodes of S(BGP) are already
distinct from the blank nodes of G.

4. Every constraint in C evaluates to true in (G union S(BGP)).

A constraint is evaluated in (G union S(BGP)) as follows:

a) BOUND(v) is true iff v is in dom(S).

b) For all other occurrences of variables in an expression in C, S is used to map the
variable to a value. If an expression contains a variable that is not bound by S,
the value of the variable is treated as an error.

c) Expressions are evaluated from the leaves to the root of the parse tree of the
expression, as explained in section 11 “Testing values”.

The cardinality of each solution of a filtered basic graph pattern is 1.

Optional graph pattern: The first step in treating an OPTIONAL is to identify its first operand.
I believe that the approach proposed in Andy Seaborne’s message http://lists.w3.org/Archives/

- 4 of 8 -

SPARQL semantics: constructive or destructive?

Public/public-rdf-dawg/2006AprJun/0175.html looks like the best way to identify the first oper-
and.

The second operand of an optional graph pattern is plainly the graph pattern contained in the curly
braces following the keyword OPTIONAL.

After identifying the operands, the next step is to define the solutions. I use the definition pro-
posed in http://lists.w3.org/Archives/Public/public-rdf-dawg/2006AprJun/0176.html , with some
additional bug fixes that I have since discovered. Let A and B be the graph patterns that are the
first and second operands, respectively. S is a solution of the optional graph pattern OPT(A,B) if
the following conditions are true:

1. S restricted to Var(A) is a solution of A.

2. Exactly one of the following is true:

a) S restricted to Var(B) is a solution of B.

b) S is undefined on (Var(B) minus Var(A)), and there is no mapping which when
restricted to Var(B) is a solution of B and whose restriction to Var(A) is S.

The cardinality of S as a solution to OPT(A,B) is the product of two numbers:

1. Let m be the cardinality of S restricted to Var(A) as a solution of A.

2. Let n be:

a) If S is a solution of B, then the cardinality of S as a solution of B.

b) Otherwise, 1.

The cardinality of S as a solution of OPT(A,B) is m*n.

Union graph pattern: Let UGP be a union graph pattern, ie, a set of graph patterns { GP1, . . .
GPk }. S is a solution of UGP if there exists an i such that the following conditions hold:

1. S is a solution of GPi.

2. For all j <> i, S is undefined on (Var(GPj) minus Var(GPi)).

(The preceding condition seems to be the semantics intended by the examples in
section 6.1 “Joining patterns with UNION”).

The cardinality of S as a solution of GGP is the sum as i ranges from 1 through k of the cardinality
of S as a solution of GPi (taking the cardinality to be 0 in case S is not a solution of GPi).

Group graph pattern: Let GGP be a group graph pattern, i.e., a set of graph patterns { GP1, . . .
GPk }. S is a solution of GGP if for all i, S is a solution of GPi. The cardinality of S as a solution
of GGP is the minimum as i ranges from 1 through k of the cardinality of S as a solution of GPi.

RDF dataset graph pattern: Let RDGP be an RDF dataset graph pattern GRAPH (g, P). Then S
is a solution of RDGP if either of these conditions is true:

- 5 of 8 -

SPARQL semantics: constructive or destructive?

1. g is an IRI, g = <ui> for some i, and S is a solution of P on dataset { Gi, (<u1>, G1) . . . ,
(<un, Gn>) }.

2. g is a variable, S(g) = <uj> for some j, and S is a solution of P on dataset { Gi, (<u1>, G1) .
. . , (<un, Gn>) }.

The cardinality of S as a solution of RDGP is the cardinality of S as solution of P in either case.

4. Constructive-centric semantics
In the constructive-centric semantics, there is no destructive phase. In addition, the construction
does not create a cross product. Instead, the construction builds solutions “from the ground up”,
that is, by recursion starting at the leaves of the query pattern and progressing to interior nodes of
the conceptual tree of operators.

A key difference from the destructive-centric semantics is that a solution S of a pattern P is neces-
sarily undefined on variables that do not appear in P. That is, dom(S) is a subset of Var(P).

Viewing the process of solving a query as a recursion on the query’s subpatterns, in the construc-
tive-centric semantics, a variable does not become bound until a pattern explicitly binds it.

The definitions for the various kinds of graph patterns are almost word-for-word identical. For
completeness, I repeat these definitions, using underlining to indicate new words and strikeout to
indicate deletions.

Filtered basic graph pattern: There seems to be a consensus that the proper scope for blank
node identifiers in the query is the filtered basic graph pattern rather than the graph pattern (see
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006AprJun/0189.html
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006AprJun/0190.html ,
http://lists.w3.org/Archives/Public/public-rdf-dawg/2006JulSep/0005.html,
and maybe http://lists.w3.org/Archives/Public/public-rdf-dawg/2006JulSep/0007.html). By fil-
tered basic graph pattern I mean the graph pattern corresponding to syntax rule [21] FilteredBa-
sicGraphPattern. Hence I write the following proposal to clarify section 2.5.1 “General
framework”.

Let FBGP be a filtered basic graph pattern, consisting of a basic graph pattern BGP and a set of
constraints C. Let G be the graph in which FBGP will be evaluated, with scoping set SC. (If a fil-
tered basic graph pattern is not nested within an RDF dataset graph pattern, then G = G0; other-
wise G = Gi for some i.) Let S be a mapping. Let S(BGP) be the set obtained by replacing all
variables v in BGP with S(v), and replacing all blank node identifiers in BGP with blank nodes
that are distinct from all blank nodes in G..

S is a solution of FBGP if the following conditions are all true:

1. dom(S) contains Var(BGP) and is contained in Var(FBGP).

- 6 of 8 -

SPARQL semantics: constructive or destructive?

2. S(BGP) does not contain a triple whose subject is a literal. (Therefore S(BGP) is an RDF
graph).

3. G entails (G union S(BGP)). Note that by design, the blank nodes of S(BGP) are already
distinct from the blank nodes of G.

4. Every constraint in C evaluates to true in (G union S(BGP)).

A constraint is evaluated in (G union S(BGP)) as follows:

a) BOUND(v) is true iff v is in dom(S).

b) For all other occurrences of variables in an expression in C, S is used to map the
variable to a value. If an expression contains a variable that is not bound by S,
the value of the variable is treated as an error.

c) Expressions are evaluated from the leaves to the root of the parse tree of the
expression, as explained in section 11 “Testing values”.

The cardinality of each solution of a filtered basic graph pattern is 1.

Optional graph pattern: The first step in treating an OPTIONAL is to identify its first operand.
I believe that the approach proposed in Andy Seaborne’s message http://lists.w3.org/Archives/
Public/public-rdf-dawg/2006AprJun/0175.html looks like the best way to identify the first oper-
and.

The second operand of an optional graph pattern is plainly the graph pattern contained in the curly
braces following the keyword OPTIONAL.

After identifying the operands, the next step is to define the solutions. I use the definition pro-
posed in http://lists.w3.org/Archives/Public/public-rdf-dawg/2006AprJun/0176.html , with some
additional bug fixes that I have since discovered. Let A and B be the graph patterns that are the
first and second operands, respectively. S is a solution of the optional graph pattern OPT(A,B) if
the following conditions are true:

1. S restricted to Var(A) is a solution of A.

2. Exactly one of the following is true:

a) S restricted to Var(B) is a solution of B.

b) S is undefined on (Var(B) minus Var(A)), and there is no mapping which when
restricted to Var(B) is a solution of B and whose restriction to Var(A) is S.

3. dom(S) is a subset of (Var(A) union Var(B)).

The cardinality of S as a solution to OPT(A,B) is the product of two numbers:

1. Let m be the cardinality of S restricted to Var(A) as a solution of A.

2. Let n be:

- 7 of 8 -

SPARQL semantics: constructive or destructive?

a) If S restricted to Var(B) is a solution of B, then the cardinality of S restricted to
Var(B) as a solution of B.

b) Otherwise, 1.

The cardinality of S as a solution of OPT(A,B) is m*n.

Union graph pattern: Let UGP be a union graph pattern, ie, a set of graph patterns { GP1, . . .
GPk }. S is a solution of UGP if there exists an i such that the following two conditions holds:

1. S is a solution of GPi.

2. For all j <> i, S is undefined on (Var(GPj) minus Var(GPi)).

(The preceding condition is not necessary with constructive semantics because a
solution of a pattern is never defined on variables outside the pattern.)

The cardinality of S as a solution of GGP is the sum as i ranges from 1 through k of the cardinality
of S as a solution of GPi (taking the cardinality to be 0 in case S is not a solution of GPi).

Group graph pattern: Let GGP be a group graph pattern, i.e., a set of graph patterns { GP1, . . .
GPk }. S is a solution of GGP if for all i, S restricted to Var(GPi) is a solution of GPi. The cardi-
nality of S as a solution of GGP is the minimum as i ranges from 1 through k of the cardinality of
S restricted to Var(GPi) as a solution of GPi.

RDF dataset graph pattern: Let RDGP be an RDF dataset graph pattern GRAPH (g, P). Then S
is a solution of RDGP if either of these conditions is true:

1. g is an IRI, g = <ui> for some i, and S is a solution of P on dataset { Gi, (<u1>, G1) . . . ,
(<un, Gn>) }.

2. g is a variable, S(g) = <uj> for some j, and S restricted to Var(P) is a solution of P on
dataset { Gi, (<u1>, G1) . . . , (<un, Gn>) }.

The cardinality of S as a solution of RDGP is the cardinality of S as solution of P in either case.

5. Contrasting the semantics
With constructive-centric semantics, the solutions of a subpattern are never defined on variables
that do not appear in that subpattern. Destructive-centric semantics, on the other hand, starts by
forming the set of all mappings, so that solutions of subpatterns are just as “wide” as solutions of
the whole pattern, being potentially defined on variables that do not appear in the subpattern.

One difference is in queries with unrestricted variables, such as

SELECT ?x
WHERE { }

- 8 of 8 -

SPARQL semantics: constructive or destructive?

Applying the grammar rules in Appendix A, the WHERE clause contains a single FilteredBa-
sicGraphPattern (rule [21]) having no BlockOfTriples and no Constraint. Thus the rules for fil-
tered basic graph pattern apply.

Under destructive-centric semantics, the constructive phase creates every possible mapping of the
set of variables { ?x } to the scoping set. In the destructive phase, none of these mappings is elim-
inated, because:

1. G entails (G union S(BGP)). Note that BGP is the empty set, so S(BGP) is empty, so this
reduces to the trivial condition that G entails G.

2. The set of constraints is empty, and therefore does not eliminate any mappings.

Under constructive-centric semantics, there is only one solution to the empty filtered basic graph
pattern, namely, the empty mapping (the mapping whose domain is the empty set) because of the
requirement that the domain of a solution must be a subset of Var(BGP), which is empty. One
could still say that when the solution is widened to account for the ?x in the SELECT list, then
every possible assignment of ?x is considered. However, it seems more natural to say that the
SELECT list does not create new bindings, so ?x remains unbound and the solution sequence con-
sists of just the empty mapping.

Another difference is in optional patterns with an empty first operand. For example

SELECT ?x
WHERE { OPTIONAL { ?x <v> <n> } }

The first operand of the OPTIONAL is an empty pattern. Under constructive-centric semantics,
the empty first operand is matched by the empty pattern. Any matches for ?x <v> <n> would pro-
vide bindings for ?x; if there is no match, then the empty pattern is the result of the query as a
whole.

Under the destructive-centric semantics, the empty first operand is matched by all possible map-
pings of ?x, and then there is no point to the OPTIONAL clause except to discard the empty map-
ping if there is a match. I think this result is non-intuitive, so that the destructive-centric
semantics would need a patch to treat an OPTIONAL with an empty first operand as a special
case to avoid this, probably to get the same result as the constructive-centric semantics.

Overall, I am coming to the conclusion that constructive-centric semantics is the better way to
specify SPARQL. I can also see from clues sprinkled throughout the document that this was
probably the intent of the authors before I joined the process anyway. If so, then I hope this paper
will help us to express that intent even better.

- End of paper -

	1. Introduction
	2. Preliminary terminology
	3. Destructive-centric semantics
	4. Constructive-centric semantics
	5. Contrasting the semantics

