Hi,

Here are the files I promised on XML Schema for BSD.

Note that this is an investigation of how to express the existing schema as XSD, not an investigation of alternatives.

I do think that we should eventually make a switch to a efficient and non-legacy-kind format but I don't think this would be a good idea at present.

Rigo, perhaps you could post the files on a server somewhere as promised. The XSLT works

P3P Base Data Schema as XML Schema

Giles Hogben JRC

Aims

The aims of this first pass solution were

1. To allow a simple 1 to 1 transformation between policies expressed in the old format and policies which conform to the XML schema.

2. To allow a simple 1 to 1 transformation between any custom built data schemas and the new format. For this purpose I have provided an xslt.

Although I have provided an XML version of the transformed schema, it is necessarily complex and this document explains how it is structured.

These aims led to the following

Assumptions for the base data schema XML schema:

1. The schema must express classes of data and their allowed relationships in terms of sub and superclasses.

In the old format this led to expressions like

<data ref="user.home-info">

Which I take to mean - the information the statement is about is an instance in the class home-info, in the class user.

OR

<data ref="user.home-info.online.uri">

Which I take to mean - the information the statement is about is an instance in the class uri, in the class online etc….

2. These classes (called structures in the old format) are reused at different levels of the hierarchy and therefore must be declared by reference within the schema hierarchy.

For example the class denoted by the structure "contact" may be used by both business-info and home-info.

3. The XML language can assume a semantic such that nested elements imply subclassing.

Although there is no formally defined semantics for P3P, by inspecting the use of elements such as purpose, one can gather that use of a sub-element in P3P may be equated to the semantic "is a subclass of…"

For example:

<purpose>

<current/>

</purpose>

Means something like:

"The data this statement is about has purpose of type (subclass of purpose) current "

4. An overall set of "categories" is assumed within any DS from which are derived subsets of categories for any class. These categories do not have the same semantic as classes. They superclass any classes used but only a certain subset of all the categories may superclass a given class. This superclassing is inherited within the DS but it follows a reverse inheritance rule because superclasses of the standard classes inherit the categories of their subclasses. For this reason it has to be declared at each level and cannot use standard inheritance syntax using the XML tree.

For example in the BSD,

<data ref="user.home-info">

May be given the additional semantic of "this data type is in the online category"

<data ref="user.home-info"><CATEGORIES><online/></CATEGORIES></data>

These requirements are satisfied by the following

Informal specification

This informal specification is formally specified in the attached XML Schema.

Data types are expressed as subclasses of a root "Datatype" element. The subclass semantic is expressed by making an element a child of another element.

For example

<Datatype>

<user>

<home-info>

<online/>

</home-info>

</user>

</Datatype>

Categories are defined by a <category name="xxxx"> element, which may appear ONLY AS LEAVES. This mimics the previous syntax where the classes were specified up to a certain granularity which was then given a category. For example:

P3P1.0:

<data ref="user.home-info"><CATEGORIES><online/><demographic>/</CATEGORIES></data>

P3P 1.1. XML Schema Compliant

<Datatype>

<user>

<home-info>

<category name="online"/>

<category name="demographic"/>

</home-info>

</user>

</Datatype>

P3P 1.0

<data ref="user.home-info.online.email"><CATEGORIES><online/></CATEGORIES></data>

P3P 1.1. XML Schema Compliant

<Datatype>

<user>

<home-info>

<online>

<email>

<category name="online"/>

<email/>

</online>

</home-info>

</user>

</Datatype>

Notice that the names of the "structures" are not specified in the XSD as a formal naming of a group of subelements is no longer necessary. An informal description of the structure of the BSD should however be given within the specification document, allowing users to know how to use the classes without reading the XSD (Maybe it's even possible to write an XSLT for the specification document J).

Notes for Transform files:

1. The XSLT is general and will transform any data schema, which is syntactically correct according to P3P 1.0.

2. The files provided are everything you need to transform a data schema using client side transformation in MS IE.

Bsdtransform.xml is the xml of the p3p1.0 BSD

Bsdtransform.xsl is the xslt

Bsdtransform.html is the client side code for executing the transform and outputting as HTML.

Bsd.xsd is the (formatted) result of a transformation on the P3P1.0 BSD

4. You can use the stylesheet with other xsl processors but you need to change the node-set extension. To transform a different DS, just change the xml input document in bsdtransform.html

5. The mechanism of the transform of the old BSD to XSD is extremely complex but is explained in the comments of the XSLT. The transform uses a multipass transform which uses the node-set xslt extension so it is specific to msxml. It can be used with SAXON with a very minor change which is written in the xslt.

Explanation of Schema Syntax Used:

The schema is contained in bsd.xsd.

The schema starts with a definition of all the categories from which the allowed categories are derived.

Starting with a definition of the root <datatype> element, it then uses the <choice> element to specify the subelements of this recursively. For each subelement, there is then a further <choice> which specifies the use of categories. It says that <category> elements used must be a leaf by saying making their usage mutually exclusive wrt any subelements.

