Top of Form

[image: image1.wmf]

bml

0

aW

9

uIGluIElTTy

9

JRUMgMjEwMDAtMyBvbiB

3

aGF

0

IHRoaXMgcHJlZGljYXRlIHNob

3

VsZCBjb

250

YWluLCBidXQgaW

4

gcHJhY

3

RpY

2

UgaW

4

gSU

1

NIGl

0

IHNob

3

VsZCBiZSBhIHN

0

cmluZyB

0

aGF

0

IGlkZW

50

aWZpZXMgdGhlIFJlZ

2

lzdHJhdGlvbiBBdXRob

3

JpdHkgb

3

IgaWRlbnRpZmljYXRpb

24

gc

3

lzdGVtIHVzZWQuIFRoaXMgcHJlZGljYXRlIGlzIGFsc

28

gb

3

B

0

aW

9

uYWwgaWYgYSB

2

YWxpZCBVUk

4

gaXMgdXNlZCBpbiB

0

aGUgaWRlbnRpZmllciwgc

2

luY

2

UgaXQgaXMgZWFzeSB

0

byBkaXNjZXJuIHRoZSB

0

eXBlIGZyb

20

gdGhlIFVSTiAoZm

9

yIGV

4

YW

1

wbGUsIGd

1

aWQ

6

LCBjcmlkOiBvciBpc

2

FuOiApLjxiciAvPiA

8

YnIgLz

5

UaGVzZSBwcm

9

wZXJ

0

aWVzIGFyZSBkZWZpbmVkIGluIGNsYXVzZSA

0

LjEgb

2

YgSVNPL

0

lFQyAyMTAwMC

0

zIChNUEVHMjEgRElJKS

4

gU

2

VlIEFubmV

4

IEEgb

2

YgSVNPL

0

lFQyAyMTAwMC

0

zIGZvciBSZXF

1

aXJlbWVudHMgZm

9

yIHRoZSBSZWdpc

3

RyYXRpb

24

gQXV

0

aG

9

yaXR

5

IGZvciBEaWdpdGFsIEl

0

ZW

0

gSWRlbnRpZmljYXRpb

24

gU

3

lzdGVtcy

48

YnIgLz

4

gPGJyIC

8

+RXhhbXBsZSBEaWdpdGFsIEl

0

ZW

0

gRGVjbGFyYXRpb

24

gd

2

l

0

aCBEaWdpdGFsIEl

0

ZW

0

gSWRlbnRpZmllcjo

8

YnIgLz

4

gPGJyIC

8

+PHByZT

4

NCiZsdDtkaWQ

6

SXRlbSByZGY

6

YWJvdXQ

9

JnF

1

b

3

Q

7

dXJuOnVubmFtZWQtMSZxdW

90

OyZndDsNCiZsdDtkaWk

6

aWRlbnRpZmllciZndDtndWlkOjEwMC

0

wMDAwLTAwMDAtMDAxJmx

0

Oy

9

kaWk

6

aWRlbnRpZmllciZn

Print | Close

	Metadata Ontologies

	IMM provides a default metadata model used to store information about assets and objects in the IMM DAM Web Service. This RDF based metadata model is used throughout the workflows and web parts for IMM. The metadata model is entirely extensible and very flexible. Developers can extend the ontology and provide unique classes of object and properties in the IMM metadata store.

The IMM SDK contains two versions of the IMM OWL ontology. One is called the IMM Full ontology, and provides a full set of metadata and classes to be used in implementing a video library for television and film content. It can be used as provided or as a base for a more specific implementation. The second is a stripped down version called IMM Core that provides all of the base classes and the minimum set of metadata that is required for IMM Web Parts and Workflows to function properly. It is recommended to start developing with the IMM Core to understand the overall metadata model and programming experience. The SDK documentation uses the IMM Core ontology in most examples.

IMM Core Ontology

The IMM metadata model is based on the MPEG-21 DIDL abstract model (see ISO 21000-2 section 6.2) represented in an RDF formatting. IMM applies the DIDL abstract model to base classes in the IMM Core OWL ontology and extends the abstract base classes for use within the IMM framework.

The following diagrams outline the base of the IMM metadata model used to describe a media item, a container, or a subclass derived from either.

[image: image2.jpg]rmes:Object

Item or Container classes
Item
Item

Item (videote emetc..)

Container (Folder, Project, etc..)

Digial tem identifier (DI}

RMCS predicates

Digital tem Identifier (DIl

RMCS predicates

Dublin Core predicates,

Domain specific predicates

Dublin Core predicates

Domain specific predicates
IPTC, EXIF XMP SMPTE efc

Custom ontology predicates

‘Customontology predicates

Looking at an individual IMM Item declaration, there are numerous subcomponents that can be added to expand on the definition. These include features such as Annotations, and Anchors which provide a way to link comments, and digital ink data directly to a timecode within the digital item (if it is temporal content). In addition custom namespace can be added to any Item or Container in the IMM model to add additional predicates as descriptors. This is accomplished by creating a new OWL ontology file and importing it into the IMM Core ontology.

Below you see a representation of a single Item instance. Items can contain basic properties (IMM predicates and Dublin Core), custom properties, and domain specific properties (from IPTC, XMP, SMPTE, or other imported ontology definitions). In addition all Items can point to other related Items through the did:ItemCollection predicate. Items point to digital or physical representations through the did:Resource predicate. The did:Resource predicate points to an instance of type Resource, which contains descriptive (usually technical) information about the Resource. For example, in the case of a digital video file, the Resource will contain pointers to VideoFormat and AudioFormat definitions, as well as technical predicates that describe detailed information about the digital file. Annotations can be attached to an Item through the IMM: AnnotationCollection predicate. Annotations can contain custom predicates, and pointers to Anchors which contain a reference to a specific time point(temporal) or location (spatial) in the digital file.

[image: image3.jpg]Item

didResource
Resource w
igital tem identifier (DIl) o AudioFomat

RMCS predicales TGS prediates ! 2
TapeFomat

_| Custom ontok CustomFormat
Dublin Core predicates Caon sy tomFormat

‘Domain specific predicates.
IPTC,EXIF XMP, SMPTE etc mcs AnnotationCollection.

Custom ontology predicates

did femCollection

IMM Namespaces

A custom set of namespaces are reserved in IMM for use in defining core classes and predicates, as well as for the use of existing ontologies.

Namespace URI termination

The RDF specification concatenates the XML namespace URI strings with the local name of the predicate. This can lead to ambiguities if the URI does not end in separator such as ‘/’ or ‘#’. Therefore it is important that all custom URI’s end with a terminator for IMM to process them correctly.

The following namespaces and qualified names are used within IMM and are reserved by the framework.

QName

Namespace

Description

imm

http://schemas.microsoft.com/imm/core/1.0#

The base IMM framework namespace.

dc

http://purl.org/dc/elements/1.1

The Dublin Core namespace

did

urn:mpeg:mpeg21:2002:02-DIDMODEL-NS#

The MPEG21 DID abstract Model namespace

didl

urn:mpeg:mpeg21:2002:02-DIDL-NS#

The MPEG21 Digital Item Declaration Language namespace. This is the XML schema implementation of the abstract model.

dii

urn:mpeg:mpeg21:2002:01-DII-NS#

The MPEG21 Digital Item Identifier Namespace

mediapro

http://ns.iview-multimedia.com/mediapro/1.0/

Microsoft Expression Media vocabulary (iView Media Pro v3.1)

mpeg7

urn:mpeg:mpeg7:schema:2001#

The MPEG7 namespace used to define broadcast metadata industry vocabulary elements

photoshop

http://ns.adobe.com/photoshop/1.0/

Adobe XMP photoshop vocabulary

xapRights

http://ns.adobe.com/xap/1.0/rights/

Adobe XMP Rights Management Schema

xap

http://ns.adobe.com/xap/1.0/

Adobe XMP Basic Schema

xmpMM

http://ns.adobe.com/xap/1.0/mm/

Adobe XMP Media Management Schema

xmpDM

http://ns.adobe.com/xmp/1.0/DynamicMedia/

Adobe Dynamic Media Schema

crs

http://ns.adobe.com/camera-rawsettings/1.0/

Adobe Camera Raw Schema

tiff

http://ns.adobe.com/tiff/1.0/

Adobe EXIF schema for TIFF

exif

http://ns.adobe.com/exif/1.0/

Adobe EXIF Schema for EXIF-specific Properties

aux

http://ns.adobe.com/exif/1.0/aux/

Adobe EXIF Schema for Additional EXIF Properties

Iptc4xmpCore

http://iptc.org/std/Iptc4xmpCore/1.0/xmlns/

IPTC core vocabulary for XMP

owl

http://www.w3.org/2002/07/ow

The Web Ontology Language namespace

rdf

http://www.w3.org/1999/02/22-rdf-syntax-ns

RDF

rdfs

http://www.w3.org/2000/01/rdf-schema

RDF Schema

xsd

http://www.w3.org/2001/XMLSchema#

Xml Schema

imm:Object Class

The root item in the IMM abstract metadata model is the Object class. This is the base class that all classes in the model inherit from and provides base level functionality to all classes that is required by the web parts and messaging framework of IMM. The Object class should be treated as sealed and not extended with custom predicates.

did:Item Class

Item is a first-level class derived from object. An item most often represents a single piece of AV data, such as a CD track, a movie or an audio file. Items may be playable, meaning they have information that can be played on a rendering device. Any object which derives from the item class is expressed via the IMM item structure

did:Container Class

Container is a first-level class derived from object. A container represents a collection of objects. Containers can represent the physical organization of objects (storage containers) or logical collections. Logical collections can have formal definitions of their contents or they can be arbitrary collections. Containers can be either homogeneous, containing objects that are all of the same class, or heterogeneous, containing objects of mixed class. Containers can contain other containers. Any object derived from the container class is expressed via the DMS container structure.

did:Annotation Class

The Annotation class is a container for notes, digital ink, and other notations about the Item. Annotations can point to a set of Anchors that define specific temporal time points or locations within an Item. Annotations are the object of a did:ItemCollection predicate on an Item or Container class.

did:Anchor Class

The Anchor class is used to bind an Annotation to a specific temporal time point or location within an Item. Anchors are the object of a did:AnchorCollection predicate on the Annotation class.

!!!did:Resource Class
The Resource class is used to point to the digital of physical representation of an Item. The Resource class holds technical predicates and points to Format type classes that describe the essence or physical representation of the Item.

Digital Item Identification (ISO 21000-3)

All Items in IMM should have a unique identifier assigned to them. These identifiers should be stored in the DII predicates provided in the IMM Core ontology. The DII predicates consist of two properties, identifier and type. The identifier predicate has a range of xsd:anyURI, and should always be in the form of a URN. For example isan: or guid:.

The type predicate is used as a descriptor of the type of the DII. There is no definition in ISO/IEC 21000-3 on what this predicate should contain, but in practice in IMM it should be a string that identifies the Registration Authority or identification system used. This predicate is also optional if a valid URN is used in the identifier, since it is easy to discern the type from the URN (for example, guid:, crid: or isan:).

These properties are defined in clause 4.1 of ISO/IEC 21000-3 (MPEG21 DII). See Annex A of ISO/IEC 21000-3 for Requirements for the Registration Authority for Digital Item Identification Systems.

Example Digital Item Declaration with Digital Item Identifier:

<did:Item rdf:about="urn:unnamed-1">

<dii:identifier>guid:100-0000-0000-001</dii:identifier>

<dii:identifier>isan:1231049484123123</dii:identifier>

</did:Item>

MediaItem (did:Item)
The MediaItem class is a base class to be used for extending predicates that should apply globally to all media type items.

VideoItem (imm:MediaItem)
The VideoItem class is an instance and base class for all items that are temporally based and can exist in either a digital or physical format, depending on the Resource that is referenced. Other classes can derive from VideoItem to implement more specific class types.

AudioItem (imm:MediaItem)
The AudioItem class is an instance and base class for all items that are audio only and can exist in either a digital or physical format.

ImageItem (imm:MediaItem)
The IMM image item can be used to describe an instance or base class. It can store global image predicates along with extensions from common image vocabularies such as the EXIF, IPTC4XMLCore, and Microsoft Expressions Media ontology. These ontologies provide standards based metadata predicates that are common to many image applications including Expression Media, and Adobe Photoshop.

Folder (did:Container)
The Folder class is a container type “virtual” folder that exists only in metadata through the DAM Web Service. It is not an actual representation of an on-disk folder, but is used as a container class to store hierarchy of files.

Extending the IMM Core Ontology

Extending the IMM Core ontology is a simple process of defining a new Web Ontology Language (OWL) document and applying a new owl:import declaration to the IMM Core.owl document. Once this is complete, the new custom defined predicates and classes can be added into existing Core classes, or used to extend the existing classes. The IMM Core.owl can also be duplicated into a new file and be used as the base of the new ontology definition.

Note:

IMM does not ship with an OWL document editing environment. We recommend the following tools for visually editing and building OWL documents.

Altova SemanticWorks
http://www.altova.com/products/semanticworks/semantic_web_rdf_owl_editor.html

Intellidimension InferEd
http://www.intellidimension.com/pages/site/products/infered/default.rsp

To create a new ontology file:

1. Open a new Web Ontology Language file in an XML editor or OWL editor like Altova SemanticWorks.

2. Declare a new base Namespace definition for the ontology. Remember to terminate the base with a “/” or a “#” character.
<rdf:RDF xml:base="http://www.example.com#” … />

3. Define your new custom RDF, OWL Datatype or ObjectType properties

4. Define any new custom Owl Classes and establish the Property Restrictions on the class. Property restrictions bind the new properties to the class definitions. You can control the datatype and the cardinality of the properties on your newly defined classes. You can also set your new class to be a subClassOf an existing class such as VideoItem, Item, Container, or Object.

5. Save the ontology.

Importing External OWL documents

6. Open the IMM Core.owl and declare a new <owl:imports> declaration near the top of the file that includes the base namespace defined in step 2.

7. Declare an XML namespace (xmlns) in the RDF element at the top of the file that provides a qualified name for your namespace.

8. Attach your new DataType or ObjectType properties to the IMM Core classes in within the IMM Core.owl file by defining a new OWL Property Restriction on your class. You can rename the IMM Core.owl file at this time to something more descriptive of your new ontology.

For example below is a section of the MediaItem class that defines a property restriction on the CaptionLanguage property.
In the OWL document you can see that the class MediaItem is a subclass of Item. You can also see that there are two more subClassOf declarations. This is how owl:Restrictions are applied to the class. The first restriction is an owl:maxCardinality. The text value of this element is set to 1, stating that only 1 CaptionLanguage property can be applied to this class. When this ontology is generated into C# classes by the OWL.exe tool, it will create a .NET property with a single value of type String. The second restriction on the CaptionLanguage property states that all of the values of that property must be of type string.

 <owl:Class rdf:about="http://schemas.microsoft.com/imm/core/1.0#MediaItem">

 <imm:summary>The MediaItem is the base class for all media types in the IMM ontology.</imm:summary>

<rdfs:comment>

MediaItem is the base class for all media asset types in the IMM ontology and the

IMM Media Library. Predicates defined on MediaItem will be visible to all sub classes

that derive from MediaItem. Use this class to store the most common global

predicates used across the Media Library that are not format specific.

</rdfs:comment>

<rdfs:label>MediaItem</rdfs:label>

<rdfs:subClassOf rdf:resource="urn:mpeg:mpeg21:2002:02-DIDMODEL-NS#Item"/>

<rdfs:subClassOf>

 <owl:Restriction>

<owl:maxCardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#nonNegativeInteger">1</owl:maxCardinality>

<owl:onProperty rdf:resource="http://schemas.microsoft.com/imm/core/1.0#CaptionLangauge"/>

 </owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

 <owl:Restriction>

<owl:allValuesFrom rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<owl:onProperty rdf:resource="http://schemas.microsoft.com/imm/core/1.0#CaptionLangauge"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 </owl:Class>

Notice the use of the maxCardinality restriction. By default in OWL a predicate can exist multiple times on a class without restriction. To restrict the cardinality of the property at the class level, set the maxCardinality to 1. This will make the property show up as a single Property in C# after running the Owl.exe tool, rather than an RDFCollection type.

Using OWL.exe to generate .NET classes from the Ontology

To work with the new ontology definition in .NET code, you need to generate new class definitions from the files and import them into your project. Using the Owl.exe tool, you simply run the tool against your newly defined OWL ontology and include any import references and generate the C# classes required. From this point you work with your classes in .NET and the IMM SDK will handle any serialization and deserialization of the instances to RDF/XML.

See the OWL Tool section for details on syntax and parameters for generating classes from Owl.exe.

Working with OWL.exe generated classes

1. COMING SOON: Add sample code of creating and working with OWL.exe generated

2. COMING SOON: explain the output of the OWL.exe generated C

3. COMING SOON: Demonstrate how to Serialize to RDF/XML

4. COMING SOON: Demonstrate how to Deserialize From RDF/XML to C

Links to external schemas for use in IMM

RDF Schema of the Dublin Core Metadata Element Set (DCMES)
This schema defines terms for the Dublin Core Metadata Element Set (the original 15 elements).
http://purl.org/dc/elements/1.1/

RDF Schema for other DCMI Elements, Element Refinements, and Encoding Schemes
This schema defines element refinements, encoding schemes and other elements.
http://purl.org/dc/terms/

RDF Schema for the DCMI Type Vocabulary
This schema defines the DCMI Type Vocabulary.
http://purl.org/dc/dcmitype/

See Also

Concepts
RDF and OWL

Other Resources
OWL Web Ontology Language Overview
RDF Primer

	Last edited by aweiker on 2007-06-13 09:00:59, Version: 9

	

Bottom of Form

_1267010568.unknown

