
Page 1 of 4

Links

 W3C wiki page http://www.w3.org/2012/ldp/wiki/ISSUE-32

 Affordances in Wikipedia http://en.wikipedia.org/wiki/Affordance

The wiki page takes an overly broad view (and that was intentional, as it says). It really lists every point

of implementation variability one would find using the RFC 2119 keywords in the specification, at the

point in time when it was created.

A less surprising (for those more steeped in the Affordance term), and happily simpler, approach is to

raise the level of abstraction some. That doesn’t make the other questions go away, but it lets us

address them in more manageable chunks.

Since the term “affordance” itself now has different meanings and inconsistent usage in practice

(source: Wikipedia), probably best to set one out here (same source): “…refer to just those action

possibilities that are readily perceivable by an actor. … It makes the concept dependent not only on the

physical capabilities of an actor, but also the actor's goals, plans, values, beliefs, and past experiences.”

Straw-man:

People want to do a fairly small and simple number of things with “collections” and their “members”,

that directly map to bootstrapping (discovery) plus interaction (CRUD operations)

Task Collection Member

Find-existing LDP is silent List-members on a collection

Create-new LDP is silent POST content to collection

List-properties GET GET

Update-properties PUT/PATCH PUT/PATCH

Delete DELETE DELETE

List-members GET membership triples n/a

Add-member (existing resource) PUT/PATCH n/a

Remove-member PUT/PATCH n/a

Delete-all-members (recursively) Under debate n/a

Since everything other than list-properties is optional, there are many combinations. Not all of them are

going to be commonly used, although your perception of how commonly used any one is will depend on

where you sit. We could simplify in several ways, including

1. Create “profiles”, commonly (based on consensus) used combinations and provide ways to

introspect those.

2. Allow introspection of each choice separately, and stay away from the combinations.

Note that the same argument applies at the lower level of abstraction, i.e. “specification options”, as

signaled by SHOULD, MAY, etc.

http://www.w3.org/2012/ldp/wiki/ISSUE-32
http://en.wikipedia.org/wiki/Affordance

Page 2 of 4

Common (?) combinations:

The names are just placeholders. I do not care much what values the working group ultimately agrees

to.

You should read text displayed in strikeout font as MAY; read normal text as MUST. Using that reading,

the profile gives clients a guarantee of what IS supported (it’s a “client usage profile” describing what

implementation features a client could successfully use for interacting with a given container), and if

the client wants anything beyond that then it must introspect at the lower level of abstraction or test for

a more “powerful” profile. It means, for example, that a “completely open” (final table on final page)

container would also satisfy the profiles for “read-only” and “strictly managed membership” containers.

Disclaimer: anything “guaranteed” by a profile might still fail for a given client. E.g. even if the server

supports “completely open” and advertises that, a particular client’s permissions or its choice of media

type etc. might effectively limit its access to “read-only” (and this will vary by resource, even on a single

server). Particularly kind implementations might choose to adjust the profiles advertised but it would be

very hard to get it perfectly right, so profiles devolve to hints rather than strong guarantees of what will

work on any given interaction.

Page 3 of 4

Read-only

This covers cases like query results.

Task Collection Member

Find-existing LDP is silent List-members on a collection

Create-new LDP is silent POST content to collection

List-properties GET GET

Update-properties PUT/PATCH PUT/PATCH

Delete DELETE DELETE

List-members GET membership triples n/a

Add-member (existing resource) PUT/PATCH n/a

Remove-member PUT/PATCH n/a

Delete-all-members (recursively) Under debate n/a

Strictly Managed Membership (“managed/closed containers”?)

The only way to add members is to create them, and the collection’s lifecycle limits the lifetime of its

members. This covers (I think) what we’ve been calling (strong/composite) containers.

Task Collection Member

Find-existing LDP is silent List-members on a collection

Create-new LDP is silent POST content to collection

List-properties GET GET

Update-properties (non-
membership only)

PUT/PATCH PUT/PATCH

Delete DELETE DELETE

List-members GET membership triples n/a

Add-member (existing resource) PUT/PATCH n/a

Remove-member PUT/PATCH n/a

Delete-all-members (recursively) DELETE collection handles it n/a

Page 4 of 4

Completely Open (“read-write”? just “containers” would be nice here OTOH keeping the unqualified

form for what the specification defines, and calling these “open” or whatever specifically is less editorial

work and might be good for adoption anyway.)

Supports “everything”. Might not hold true at lower level of abstraction, e.g. not all media types (known

+ unknown/extension) would be required.

Task Collection Member

Find-existing LDP is silent List-members on a collection

Create-new LDP is silent POST content to collection

List-properties GET GET

Update-properties PUT/PATCH PUT/PATCH

Delete DELETE DELETE

List-members GET membership triples n/a

Add-member (existing resource) PUT/PATCH n/a

Remove-member PUT/PATCH n/a

Delete-all-members (recursively) Under debate n/a

Specification options that operate at a lower level of abstraction must be introspected separately (and

consistently, regardless of the profile) across all profiles. I’ll worry about how to signal profile

compliance as part of handling that lower level.

All other combinations of supported features are “just” unqualified “LDP containers”.

