
Jacob Jett, Guangchen Ruan, Leena Unnikrishnan, Colleen Fallaw,

Chistopher Maden, Tim Cole
UNIVERSITY OF ILLINOIS GSLIS | INDIANA UNIVERISTY

Proposal for Persistent & Unique

Entity Identifiers

Executive Summary
This proposal argues for the establishment of persistent and unique identifiers for page level

content. The page is a key conceptual entity within the HathiTrust Research Center (HTRC)

framework. Volumes are composed of pages and pages are the size of the portions of data that the

HTRC’s analytics modules consume and execute algorithms across. The need for infrastructure

that supports persistent and unique identity for is best described by seven use cases:

1. Persistent Citability: Scholars engaging in the analysis of HTRC resources have a clear

need to cite those resources in a persistent manner independent of those resources’ relative

positions within other entities.

2. Point-in-time Citability: Scholars engaging in the analysis of HTRC resources have a

clear need to cite resources in an unambiguous way that is persistent with respect to time.

3. Reproducibility: Scholars need methods by which the resources that they cite can be

shared so that their work conforms to the norms of peer-review and reproducibility of

results.

4. Supporting “non-consumptive” Usage: Anonymizing page-level content by

disassociating it from the volumes that it is conceptually a part of increases the difficulty

of leveraging HTRC analytics modules for the direct reproduction of HathiTrust (HT)

content.

5. Improved Granularity: Since many features that scholars are interested in exist at the

conceptual level of a page rather than at the level of a volume, unique page-level entities

expand the types of methods by which worksets can be gathered and by which analytics

modules can be constructed.

6. Expanded Workset Membership: In the near future we would like to empower scholars

with options for creating worksets from arbitrary resources at arbitrary levels of

granularity, including constructing worksets from collections of arbitrary pages.

7. Supporting Graph Representations: Unique identifiers for page-level content facilitate

the creation of more conceptually accurate and functional graph representations of the HT

corpus.

There several ways in which persistent and unique identifiers for page-level content can be

implemented. The solutions range from Handle or ARK Identifier servers providing unique

resource resolution services on the Web, to the internal use of URN schemes for unique and

persistent internal reference. Since page-level content within the HTRC context is not meant to be

“consumable” there is no need for it to be uniquely identified in a manner that is resolvable with

respect to ordinary Web browsers. Therefore, the adoption of a URN scheme makes the most sense

for the HTRC’s needs. Of the possible URN schemes, the UUID scheme provides both a well-

documented solution, there are algorithms for generating UUIDs in the libraries of most software

languages, and a highly scalable solution, the UUID scheme provides 3.4 x 1038 possible unique

identifiers.

Page-level Identifiers Recommendation

It is our recommendation that infrastructure supporting the creation and management of UUIDs

for page-level content be adopted. In addition, as a simple means of providing support for citability

down to the level of the exact representations used in analyses, we propose extending the scheme

to include the individual file objects, the OCR text and jpeg / tiff image files, so that each file

object has a globally unique and persistent reference within the HTRC context.

Our estimate of the activities needed for such an implementation, including the human effort, are:

Design and implement database

Task Time

Design schemas for RDBMS and graph database, generate and ingest dummy data. 1 week

Performance evaluation between RDBMS and graph database. 1.5 weeks

Decision making on which database to use, schema refine, performance tuning. 1 week

Design and implement identifier minting system
Task Time

Modify Volume/Page ingestion; implement detection algorithm that detects changes in METs; implement JDBC or graph DB

operations that insert corresponding records into database. Perform debug and functionality test.

 2.5

weeks

Implement code that mints identifiers for existing Volumes in Cassandra; run the code and insert corresponding records into

RDBMS or graph DB.

 2

weeks

Extend existing DataAPI
Task Time

Design and implement new RESTful calls to fulfill user queries that contain point-in-time info in resource request; and calls

that request identifiers, e.g. query minted id for a Page based on a sequence number.

 2.5

weeks

Design other RESTful calls that retrieve, query and insert records for other HTRC data assets, e.g. Workset and software

packages.

 2 weeks

Adoption of Identifiers for additional entities within the HTRC context

In addition to adopting persistent and unique identifiers for page-level content, our group was

asked to consider the adoption of identifier schemes for additional entities with the HTRC context.

Since volumes are already adequately identified by the HT’s Handle service and the Internet

Archive’s ARK Identifier server, no further action is required for volumes.

Worksets and analytics modules were the other two entities considered. Since both of these entities

are either already encapsulated within a Web facing service (i.e., the workset builder) or are under

consideration for migration to a Web facing service (i.e. Git) it does not make sense to simply fold

them into the UUID services recommended above. Rather, a gentler identification scheme of

workset / analytics module name + author / user name can be exploited.

Our estimate of the activities needed for such an implementation, including the human effort, are:

Implement version control for Worksets1

Task Time

Modify settings in the WSO2 Governance Registry to turn on versioning for Worksets, including testing and evaluating storage

implications.

2 days

Migrate Analytics Modules into GitHub

Task Time

Check all Analytic Modules and other HTRC Software Projects into GitHub 2 days

Layered Services

As noted above, extending the UUIDs to encompass the file objects that store and provide the

representations of page-level content can be used as a means to achieve version control of

resources within the HTRC context. There are alternate means of achieving this through layered

services. We considered a number of layered services that could be exploited for content

negotiation, version control and for support of an HTRC-based page turner client. Adoption of any

of the layered services suggested in this summary and the proposal document should not be

considered a recommendation but rather exists to articulate a number of stretch goals that can be

realized through the implementation of persistent and unique identifiers.

Our estimate of the activities needed for such an implementation, including the human effort, are:

Extending the Data API to include negotiation services

Task Time

Extensions to the Data API including negotiated services. 3 weeks

Implementation of name resolver services for Volumes, Pages, and File Objects

Task Time

Determine the type of database to use: RDBMS or graph database, design and implementation of the same. 3 weeks

Implementation of name resolver services for Worksets and Analytics Modules

Task Time

Tool to add identifiers for existing Worksets. 1.5 weeks

Software tool to update database with identifiers for analytic modules and other software projects committed to github. 2 weeks

Other Services

We also considered the implementation of a Handle or ARK Identifier service and server in place

of many of the name resolver services listed above. However, any dedicated server would only

1 Note that versioning has already been provided for in the Workset xsd document.

have limited utility within the HTRC context, essentially being a name resolution service only for

those Worksets and Analytics Modules which are made openly accessible to users outside of the

HTRC. Combined with the equipment expenses and additional time in labor (listed below) we do

not recommend implementing a Handle or ARK Identifier server until such a time as HTRC

resources are to be made more widely available to the Web-going public.

Design & Implementation of a Handle Server for additional Web-based name resolution

services

Task Time

Application and receipt for a unique institutional identifier 1 week

Set up and configuration of Handle server, including implementation of additional customized API services 4 weeks

Updates to existing layered services to operate with Handle server, implementation of local Handle service including

reading and interpreting data from the table, interpreting JSON/XML/other access information, directing to layered service

for date-based identifiers.

2 weeks

Modify the ingest process to update the database appropriately for Pages, files, and Volumes: add new items, handle deletes

by updating the "end date column", create access information in expected JSON/XML/other format etc.

2 days

Add above procedures to Workset builder for creation and deletion of Worksets. 1.5 weeks

Finally, we considered future growth scenarios. If the proposals for both page-level and workset /

analytics modules are adopted then the HTRC will be well-positioned to naturally grow into

experimentation with graph or RDF-based infrastructures. Any graph-based representation will be

able to fully exploit the HTRC’s identifiers. Should additional identifiers specific to particular

graph nodes become necessary then the adoption of additional identifier schemas, or the reuse of

the UUID scheme under a new context, can be explored more fully. Ideally, the good use of

existing RDF-based resources combined with best practice usages of blank nodes, data / content

literals, and appropriate predicates should ensure that graph-based representations and

infrastructure provide scalable and agile services.

Conclusion

The primary risk that HTRC faces by not adopting some form of globally persistent identifier

scheme for page-level content is the creation of a gulf between the functionality desired by

scholarly users and the functionality that the existing infrastructure can support. Such a gulf will

ultimately stifle the kinds of research questions that scholars can develop to exploit the HTRC’s

services to resolve. Globally persistent identifiers at every level of conceptual entity directly

ameliorate these risks. By adopting a persistent and unique means for identifying page-level

content the HTRC can both better meet the needs of its scholarly users and more fully prepare for

future endeavors.

Context
The HathiTrust Research Center (HTRC) was the result of a call for proposals by the HathiTrust

(HT) Executive Committee to establish a research center that would facilitate leveraging the

millions of in-copyright works owned by HathiTrust member institutions in “non-consumptive”

computational research. To this end research teams at Indiana University (IU) and the University

of Illinois at Urbana-Champaign (UIUC) combined their efforts in a joint development venture to

realize the HTRC concept. As the HTRC continues to grow and evolve so to have its computational

and system needs. Specifically in the context of this proposal, the need for a persistent and unique

method of identifying Page-level content is discussed at length and a proposal for its

implementation put forth. Adoption of persistent and unique identifiers for other entities within

the HTRC’s computational analysis milieu are also discussed and included within the confines of

the overall implementation proposal. The design and implementation of layered services, including

the implementation of a Handle server for sharing HTRC entities on the Web, are also discussed

and are included in the proposal in the form of stretch goals.

Definitions
Within the HTRC context there are several key entities that exist to support various HTRC

functions and initiatives. The important entities for this proposal are: Worksets, Volumes, Pages,

File Objects, and Analytics Modules.

Workset

The core functionality of the HTRC’s system is that researchers can gather together an arbitrary

grouping of research materials and run selected Analytics Modules on their content, generating

various publishable research results. In all ways, an HTRC Workset is analogous to a scholar’s

research collection. At this time, Workset membership is limited to Volumes. Therefore, within

the context of HTRC we define a Workset as:

 Workset: a collection of Volumes

Unfortunately, Volumes do not correspond to actual analytic granules and so this definition does

not actually meet researcher needs with regards to the specificity of the data actually being

analyzed. In the future a broader definition for Workset that can include resources at the Page and

File Object levels (or even graphs) will facilitate growth in both the kinds of Analytics Modules

that can be used on a Workset and the claims that can be made based on the results of analyses.

Volume

One of the most basic entities within the HTRC’s current data model is that of Volume. From a

conceptual point of view a Volume is a generic digital representation of a corresponding physical

book. However, as an artifact of the digitization process, physical books are not digitized whole

cloth but are instead digitized on a Page by Page basis. For practical purposes then, within the

context of the HTRC we define a Volume as:

 Volume: a collection of Pages

Within the HTRC context, Volumes are identified by identifiers that are assigned to them by their

owning institution. By HT convention all Volume identifiers are either Handles assigned by the

HT or are ARK identifiers assigned by the Internet Archive. Volumes are described by METS files

which denote both what File Objects are a part of a Volume and in what order (or “sequence”)

Page level content (in the form of File Objects) should be arranged in for client software such as

the HT Page-turner.

Page

A Page is the minimum content granule within the HT and HTRC systems. It corresponds to the

content of one side of one leaf of a physical book. In the context of the HTRC we define a Page

as:

Page: digitized content that directly corresponds to real-world content appearing on a

physical Page (i.e. on one side of a physical leaf) in a physical book

From the end user’s point of view a Page is a specific resource they wish to interact with. Because

there are multiple methods to digitize real-world content and thereby multiple digital

representations of digitized content, a Page is a conceptual container used by the system to group

various representations of digital content together (e.g., to group various versions of File Objects

or File Object mimeTypes together). Within the current context of the HTRC, content at this level

is identified by a Volume id in combination with the sequence of the Page within that Volume.

Pages do not inherently have an order (or sequence value) but rather, this is a relationship asserted

by the Volume (through the metadata contained within the METS file that describes it) within

which they are a constituent of.

File Object

The File Object is the actual thing consumed by a client software package (e.g., the HT Page-

turner) or by an Analytics Module such as the HTRC’s feature extraction algorithms. In the context

of the HTRC we define a File Object as:

File Object: a file containing a format specific representation of some Page level content

(e.g. an OCR text representation of a Page or the corresponding tiff or jpeg image

representation of that same Page)

From the system point of view, a File Object is the thing which must be parsed or rendered by

some Analytics Module or software client. In the current HTRC context, File Objects are

identified by a combination of Volume id and file name. There is no method for detecting changes

in File Objects between one ingest and the next. The METS files that describe Volumes also

contain some minimum metadata describing File Objects in the form of checksums but no means

of leveraging that data for version control has been implemented yet.

Analytics Module

An Analytics Module describes the various groups of algorithms that process various parts of the

HT corpus. These include feature extraction algorithms, SEASR algorithms, and various R and

Python clients developed by the HTRC and scholarly researchers. As a part of the HTRC’s research

workflows, an Analytics Module consumes File Objects and produces some analytical results that

can be further leveraged by HTRC staff or researchers. Conceptually an Analytics Module

consumes Page level content through the intermediaries of Worksets (which are comprised of

Volumes) and Volumes (which in turn are comprised of Pages). In the context of the HTRC then,

we define an Analytics Module as:

Analytics Module: any arbitrary grouping of software that is designed to specifically

consume a Workset or similar sub-collection of the HT corpus and return analytics results

(e.g. extracted features, statistically significant pattern analysis results, etc.)

Currently an Analytics Module registers with HTRC systems via configuration files specifying its

deployment details. An Analytics Module has a name specified in the configuration file, and this

name can be used to identify it in the context of the HTRC system. There is currently no uniform

method for storing, modifying, or referring to the particular instance of an Analytics Module used

in an analysis.

Proposal for Persistent & Unique Page Identifiers
The primary goal of this document is to propose the adoption of a persistent and unique method

for referring to Page level content. Two existing methods for identifying Page level content

already exist:

1. Page level content is identified in the context of the HT Page-turner client by the

combination of a Volume identifier and the order value assigned to the File Objects that

contain various representations of that Page’s content.

2. Page level content is identified in the context of the HTRC ingestion workflow by the

combination of a Volume identifier and the order value assigned to the File Objects that

contain various representations of that Page’s content. Currently in HTRC, the Volume

identifier is used as the file name of a zip File Object that contains the File Objects

containing the OCR text representations of the Page’s content. HTRC anticipates that other

types of representations in addition to OCR text, such as images or TEI text, will also be

included in the zip File Object that represents the Volume. These other representations will

need to be identified distinctly.

The primary problem with both of the Volume identifier plus order schemes is that they do not

provide a persistent means of identifying Page level content. They are not persistent because HT’s

member institutions periodically rerun OCR processes providing new text File Objects in the

process. Sometimes Volumes are completely rescanned and additional Pages are added

necessitating changes in the relative order values associated with each Page. Finally, it is

occasionally the case that entire Volumes are withdrawn from the HT corpus due to copyright

concerns.

The two schemes described above are also inadequate with regards to uniquely identifying Page

level content. This is because the unique portion of any arbitrary Page identifier is the identifier

for the Volume it is a part of. This leaves the infrastructure vulnerable to various collisions between

Volumes during the rsync/ingestion, query response, and analytics workflows. If for some reason

the Pages from two or more Volumes were to be merged together it would be impossible to

disambiguate them.

There are clear benefits that can be realized by adopting a persistent and unique identifier scheme

as well as risks for the project should a scheme not be adopted. These are detailed below as

Objective-specific Use Cases and Future-Functionality Use Cases.

Objective-specific Use Cases

Objective-specific use cases all revolve around the HTRC’s primary goal of supporting research

that exploits the HT corpus via “non-consumptive” means. In order for the research results to be

considered valid, the scholars analyzing the corpus need reliable methods for citing their data so

that the results are reproducible. A recent user study by members of the Illinois team demonstrated

that citability and reproducibility are core requirements for scholarly uptake, with one interviewee

noting:

“‘[I]f you just say, I have a corpus and nobody is allowed to see it but wonderful things

come out of it… That’s not really research. That is a problem here, I think, for us, because

we are just starting with this kind of work. We are trying to get accountability for the kind

of work we are doing. And it’s important for us to show the basis our work’ (P13).” —

excerpted from Fenlon et al, 2014.

Persistent Citability: A scholar should be able to refer to content within a Volume in a way that

will survive changes to the sequence or content details. For example, “the poem on page 53” might

become “the poem on page 55” if new Pages are added to the Volume; there should be a way to

cite the Page with the poem that survives these changes that is independent of its relative position

inside of the Volume.

 Benefits: Adoption of a persistent and unique identifier scheme would allow Page level

content to be decoupled from its position within a Volume allowing citations of specific

portions of content to be portable across multiple versions of a Volume. Failure to adopt a

reliable means of citing content that is critical to a scholar’s research will create a barricade

towards scholarly uptake and usage of the HTRC as a means of analyzing the HT corpus.

Point-in-time Citability: A scholar should be able to refer to the specific text or image that was

the subject of analysis. If older versions of files are discarded, such references may become

unresolvable, but the reference should still be unambiguous. This can be as simple as the system

noting in a log somewhere that a specific resource has been withdrawn from the corpus.

 Benefits: Adoption of a persistent and unique identifier scheme here directly supports the

reproducibility use case below by providing the HTRC system with a means of identifying

content that has updated, replaced, or withdrawn. Failure to adopt a reliable means of

referencing specific analytic granules at the point-in-time at which they were analyzed

directly impacts the reproducibility of the outcomes of research processes. No claims of

reproducibility will be able to be asserted as the data being analyzed is liable to be volatile.

Reproducibility: A scholar should be able to share references to the content he or she analyzed

so that others can reproduce their work. As long as the content in question is available, it should

be retrieved unambiguously; if the content is discarded, that should be clear that it has been

discarded, rather than having slightly different content silently substituted.

 Benefits: Adoption of a persistent and unique identifier scheme supports the ability of

scholars to reuse the specific components of other scholars’ analyses at a variety of

granularities, including the Workset, Volume, and Page levels in order to verify and

validate research outcomes through the peer review process. Failure to adopt a reliable

means for scholars to share their data and analytic workflows will serve as a barricade

towards peer review of research results ultimately impeding the uptake and usage of the

HTRC as a means of analyzing the HT corpus.

Supporting “Non-consumption” Usage: It has been pointed out that there is a very small but

present risk that a clever computer scientist may be able to combine the data provided through

analyses like the feature extraction Analytics Module and a sophisticatedly configured n-gram

viewer to reconstruct the content of a Volume. While there is no method that can act as a panacea

and completely ameliorate this potential risk, adoption of a methodology that moves away from

leveraging information contained in the order value to identify both Page level content within a

Volume and Volume-specific chunks of the feature extraction output improves the situation.

 Benefits: Adoption of a persistent and unique identifier scheme further reduces the risk

that analytics results might be leveraged to reconstruct entire Volumes of content from the

HT corpus by making Pages more anonymous and less directly linked to the Volume entity

that contextualizes them. While failure to adopt a reliable means of decoupling Page level

content from its relative position within a Volume only maintains the status quo with

regards to the risk that a researcher might reconstruct an entire Volume’s content, it does

continue to overload conceptual notions of Page with that of Volume.

Future-functionality Use Cases

We anticipate that the adoption of a persistent and unique identifier scheme will greatly facilitate

the development of workflows and infrastructure that support new or expanded capabilities within

the HTRC context. In particular, granularity of Workset members is an important consideration of

scholars seeking to use the HTRC’s analytical services (Fenlon et al, 2014).

Improved Granularity: We would ideally like to use the identifiers to point at the minimum size

content blocks within the HTRC system. Since we know that the File Objects that provide text or

image representations of a Volume are chunked at the Page level, it would be advantageous to be

able to point directly at Pages and File Objects, rather than going through the indirection of

Volume membership.

 Benefits: Adoption of a persistent and unique identifier scheme can increase the efficiency

and functionality of HTRC Analytics Modules by facilitating both the construction of

queries that can directly interrogate Page level content and the connection of researchers’

annotations to specific Page level content. Failure to adopt means of reliably identifying

smaller granules of content than the Volume level will limit in the kinds of queries that

researchers can employ during the process of Workset creation, artificially constraining the

kinds of research questions that they can ask with regards to the HT corpus.

Expanded Workset Membership: Expanded entity granularity, especially at the Page level,

directly supports a number of additional Workset membership use cases and empowers researchers

to build Worksets that consist of Pages containing specific types of content, such as poems.

 Benefits: Adoption of a persistent and unique identifier scheme directly supports scholarly

requirements for Worksets consisting of Pages containing specific types of content,

expanding the kinds of research questions that the HTRC’s analytics services can support.

Failure to adopt a means of identifying more granular content will lock Workset and

collection entities into a membership definition that excludes any kind of resource other

than Volumes, ultimately stifling the kinds of analyses that researchers can carry out.

Supporting Graph Representations of HT Corpus Entities: Researchers at Illinois are currently

exploring graph representations of Worksets and other sub-divisions of the HT corpus through the

Workset Creation for Scholarly Analysis (WCSA) initiative. A National Science Foundation

(NSF) BIGDATA grant proposal has recently been submitted that will continue and expand upon

the results of the WCSA initiative. Persistent and unique identifiers for Page level content directly

support the activities of both initiatives.

 Benefits: Adoption of a persistent and unique means of identifying Page level content

directly supports both initiatives by facilitating the development of nuanced representations

of Worksets, similar collection entities, Volumes, and Pages. Failure to adopt will

complicate and slow the work of both initiatives as they will require additional

infrastructure to map conceptual entities within their frameworks to actual entities in the

existing HTRC infrastructure. The HTRC will also be poorly positioned to leverage

research outcomes from the initiatives.

Use Case Scenarios

Persistent Page Citability

In the course of discussing the results of an analysis, a scholar might want to highlight particular

examples. In the status quo, the scholar only has the option of a traditional citation (which a reader

might then use to identify the text manually), or URLs in the HathiTrust Page Turner, which rely

on the volatile page sequence numbers. For example, a scholar might cite:

Albert Mérat, “Prologue,” in L’idole (Paris: Lemerre, 1869), 2–3.

Or, the scholar might offer the URLs

https://babel.hathitrust.org/shcgi/pt?id=hvd.hnx8ey;view=1up;seq=16 and

https://babel.hathitrust.org/shcgi/pt?id=hvd.hnx8ey;view=1up;seq=17, accessed 18 August 2014.

With persistent Page citability, a scholar might be able to make a citation like one of these:

Albert Mérat, “Prologue,” in L’idole (Paris: Lemerre, 1869), 2–3,

https://babel.hathitrust.org/shcgi/pt?id=hvd.hnx8ey;page=12345678-9abc-def0-1234-

56789abcdef0.

or:

Albert Mérat, “Prologue,” in L’idole (Paris: Lemerre, 1869), 2–3,

http://www.htrc.org/hdl/12345678-9abc-def0-1234-56789abcdef0.

These citations would refer to the content on the Page in question, even if the leaf were rescanned,

OCR were re-run, or leaves were inserted or deleted, changing the sequence number.

Point-in-time Workset/Analytics Module Citability

When a scholar publishes an analysis, it would be desirable to be able to refer to the specific

content and specific analysis that was performed. The scholar may have used an Analytics Module

published by someone else, and subject to subsequent change; likewise, the content of the Workset

may shift e.g. due to rescanning or removal of Volumes.

The scholar might then write something like, “We ran the Data Capsules analysis

(http://github.com/htrc/HTRC-Data-Capsules/commit/894ca) on the Ancient Greek corpus

(http://www.htrc.org/workset/AncientGreek@miao/version/3).” A reader of the publication would

be able either to retrieve the specific point-in-time Workset and Analytics Module and reproduce

the results, or would be able to understand that the content and/or analysis had changed, possibly

explaining variance in the results.

Persistent File Object Citability

A scholar may wish to comment on specific versions of the digital representation of Pages, e.g. to

analyze OCR errors. In that case, references to specific File Objects are required, e.g. “In the scan

of page 5 (http://www.htrc.org/content/mdp.1234567/abcd.tiff), the insufficient resolution leads to

persistent rn/m recognition errors, as seen in the resulting text

(http://www.htrc.org/content/mdp.1234567/hjkl.txt).” The File Object URIs may not be resolvable

to the general public reading the publication, but an HTRC-authorized scholar may be able to

access the image and see an n-gram of the text page, confirming the first scholar’s analysis.

Persistent & Unique Identifier Schemes

There are a number of schemes and specifications that might be adopted to institute the creation

of URIs for additional assets within the HTRC context. With regards to URIs there are two routes

to be chosen depending on the types of end usage expected (Berners-Lee, Fielding, & Masinter,

2005). For those entities which we expect end users to interact with via browsers, the use of URLs

might make the most sense. However, as most of our use cases concern backend consumption of

objects and conceptual entities by the HTRC’s services and Analytics Modules, it is the URN that

seems to be the most likely candidate for adoption.

Uniform Resource Locators

We considered the following two URL standards: California Digital Library’s ARK (Archival

Resource Key) Identifiers (Kunze & Rodgers, 2013) and the Handle System Protocol (Sun,

Lannom, & Boesch, 2003; Sun et al, 2003). Both provide recipes for minting unique identifiers for

a variety of entities but other than some requirements that identifier strings should be opaque and

should not be based on changeable attributes of an entity neither system prescribes the exact means

by which entity-level identifiers should be constructed. In our context the requirement that entity-

level identifiers be opaque would refer to the order value that both the HT Page-turner and the

Cassandra store leverage to keep track of Page level entities. Since order is an attribute that has

already been demonstrated to be changeable, it clearly doesn’t meet the requirements of either

specification. Despite this requirement neither protocol is focused specifically on identifying

entities in a context-free manner, rather both protocols are designed around assigning authoritative

identifiers at the organizational level and managing the resolution of resource requests by Web

browsers.

Implementing either protocol would be costly, as a dedicated web server would need to be

maintained to resolve requests made for HTRC resources by other web agents. Additionally, under

the terms of “non-consumptive” research, providing a service that would actually serve Page level

content or the File Objects themselves out onto the web is undesirable under most circumstances.

Finally HTRC would still be left with developing an identifier scheme that opaquely identifies

each of the entities for which ARK identifiers or Handles would be minted. Neither of these

services truly meet the needs listed above, which are methodologies for ensuring reproducibility

of research results and improving the granularity at which HTRC provides services to scholars.

Uniform Resource Names

There are a very large number of URN schemes used worldwide today. They range from ISBNs

and ISSNs, through UUIDs, to more esoteric and context dependent schemes such as the mpeg-7

and the European Union’s Lex URN namespaces. Of all of the possible URN schema that the

HTRC could adopt, UUID appears to be the best fit. It provides a very large range of possible

identifiers (3.4 x 1038 possible combinations; Leach, Mealling, & Salz, 2005) which should scale

very well to the billions of Page level entities within the HT corpus and File Objects that provide

representations of them.

Recommendation for Page level Entities

It is our recommendation that infrastructure for minting and leveraging UUIDs that persistently

and uniquely identify both Page level content and their underlying File Objects be adopted and

implemented. Creating an entity that conceptually represents Page level content regardless of

whether it is represented to the end user agent (which in the HTRC context will frequently be a

software agent, i.e., a Analytics Module) as a rendered image file or a text file increases the

granularity at which scholars can ask research questions and provides opportunities for the

development of new HTRC services capable of exploiting the expanded conceptual model (see

Fig. 1).

Figure 1: Expanded Conceptual Model for Volumes

Overall design principles

As Cassandra only keeps the latest version of Page–level content but, we want to provide Point-

in-time citability, even if the version in question may no longer be available, it is better to set up

another data store (e.g., a RDBMS or graph database) to keep track of persistent identifiers while

leaving Cassandra intact. The basic idea is to separate the storage of actual Volume content from

the information necessary to construct identifiers (i.e. to separate Page level content from that

content’s relative position within a Volume). No changes to the Cassandra schema design are

necessary.

Another rationale is that the query for Point-in-time citability needs to be flexible and Cassandra,

as a NoSQL store, has very limited support for that (though Cassandra’s CQL provides query

capability to some extent, it is still far from what we need). An RDBMS can answer query requests

more efficiently. However, we do have scalability and performance concerns regarding an

RDBMS store. Since we are going to only store identifier data rather than actual content in the

RDBMS, then robust indexing can be pre-built to speed up queries. We would only have a

moderate number of tables (i.e., three tables for representing the conceptual data model and another

two or three tables for maintaining persistent identifiers for HTRC data assets – e.g., Worksets and

Analytics Modules). We expect an RDBMS be able to satisfy our performance requirements. To

get a quantified performance measure, we intend to use Neo4j as an alternative and conduct

performance comparison between the two.

UUID generation and database records insertion during data ingestion

For the RDBMS, we have the following three tables that are used to represent the conceptual data

model as well as keeping track of how a Page evolves over time, e.g., when a Page is added,

deleted, or rescanned.

RDBMS schema design

Table 1: RDBMS table that stores Volume metadata, i.e. various METS files

volumeID revisionDate originalMETS updatedMETs

mdp.1234567 03-08-2014 text blob text blob

mdp.1234567 04-15-2014

mdp.1234567 05-1-2014

mdp.1234567 06-18-2014

Where ‘volumeID’ is HT’s ID for a Volume, ‘revisionDate’ is the date when we detect that a

revision has occurred through an updated METS, normally this is the date when an rsync is

performed and a new METS file is obtained. The column ‘originalMETS’ stores the original

METS XML file that was rsynced from HT and the ‘updatedMETS’ column stores the METS files

that have been supplemented persistent identifiers for Pages and File Objects. Below is an

example of an ‘updatedMETS’,

<METS:structMap>

 <METS:div ORDER="110" LABEL="UNTYPICAL_PAGE" TYPE="page" ORDERLABEL="100">

 <METS:fptr FILEID="TXT00000110"/>

 <METS:fptr FILEID="IMG00000110"/>

 </METS:div>

 </METS:structMap>

We could replace the above with something like this:

<METS:structMap>

 <METS:div ORDER="110" LABEL="UNTYPICAL_PAGE" TYPE="page" ORDERLABEL="100"

PAGEPID="PAGE_PERSISTENT_ID">

 <METS:fptr FILEID="TXT00000110" FILEPID="FOO"/>

 <METS:fptr FILEID="IMG00000110" FILEPID="BAR"/>

 </METS:div>

 </METS:structMap>

We add an extra attribute named ‘PAGEPID’ indicating the persistent Page identifier of the Page.

Similarly, for each fptr element (scanned image, OCR plain text, etc), we add an extra attribute

called “FILEPID” indicating the persistent file identifier. Here we assume that any Page/File

Object change (i.e., any addition, deletion, or update) will yield a new METS file when we perform

an rsync from HT. We note that out “updated METS” files have a different schema and cannot be

parsed by the parser intended for the METS files delivered during rsync. We need to generate a

new XSD for the “updated METS” files. In Table 1, ‘volumeID’ and ‘revisionDate’ together serve

as the primary key.

Table 2: RDBMS table that stores Pages and their ordering

volumeID pageID order revisionDate

mdp.1234567 111-222 5 03-08-2014

mdp.1234567 111-222 5 04-15-2014

mdp.1234567 111-222 6 05-01-2014

mdp.1234567 111-222 null 06-18-2014

mdp.1234567 222-333 10 03-08-2014

mdp.1234567 222-333 10 04-15-2014

mdp.1234567 222-333 10 05-01-2014

mdp.1234567 222-333 10 06-18-2014

Where ‘pageID’ is the minted persistent ID for a Page and the order attribute’s value is its

sequence number imposed by a METS file. The columns ‘volumeID’ and ‘revisionDate’ together

serve as the foreign key which allow us to retrieve the corresponding METS file in Table 1. Note

that it is possible that a Page has no order-mapping in METS due to deletion. We can use a special

value (e.g., ‘null’) to indicate this case. We also note that the order attribute can actually be derived

from the METS file. However, we still store it explicitly in a separate column to speed up the query

as we think order may be an important attribute to query. This strategy trades space (i.e., it has an

extra column) for efficiency. In this table, ‘pageID’ and ‘revisionDate’ together serve as the

primary key.

Table 3: RDBMS table that stores persistent IDs of File Objects

pageID fileID accessionDate deaccessionDate

222-333 5678 03-08-2014 05-01-2014

222-333 6789 06-18-2014 06-18-2014

Where ‘fileID’ is the persistent ID minted for a File Object (e.g. a scanned image or an OCR plain

text). The column ‘accessionDate’ is the date of this File Object’s accession, i.e. has a

corresponding record within the METS. The column ‘deaccessionDate’ is the last known revision

date that this File Object still existed. In other words, ‘deaccessionDate’ records when a File

Object is superseded or deleted, i.e. the date that the File Object disappeared from the METS file.

Under the current workflow, when a File Object’s content is updated, HT will silently supersede

the obsolete File Object by directly writing the new File Object over the old one, retaining the

same filename. We will need to check the MD5 field of a Page in order to tell whether its content

has been changed. In this table, ‘pageID’ and ‘fileID’ together serve as the primary key.

We note that even though in Table 3 we only keep the ‘accessionDate’ and the ‘deaccessionDate’

of a File Object, by joining Tables 1, 2 and 3 and specifying the time interval starting from

‘accessionDate’ and ending with ‘deaccessionDate’, we are able to retrieve all METS that has

records for a specific File Object.

We also note that apart from above tables, we need to create tables that keep persistent identifiers

for other HTRC data assets, e.g., Workset and Analytics Modules.

UUID generation

On ingest of a completely new Volume, we have following tasks:

Pages must be identified and UUIDs minted for each. On initial ingest, this appears to be as simple

as creating one Page identifier for each div element containing fptr elements in a Volume’s

corresponding METS file. Moreover, we associate the File Objects (e.g. image and plain text

representations) named in the fptr elements to the corresponding Page identifier and mint UUIDs

for each File Object. As noted in Table 2 above, the corresponding order value is stored and

mapped to the corresponding Page entity.

On ingest of a new version of an existing Volume, we have following tasks:

The nature of any changes to a Volume must be determined. The fact that the File Objects related

to a Volume have changed may indicate things as trivial as that the METS generation software

was updated, or it could indicate more substantial changes have occurred such as that completely

new scans or OCR content is available, that the ordering of Pages has changed, or that any

combination of the preceding changes has occurred. Checksums must be considered to determine

the exact nature of the changes.

New File Object identifiers must be minted as needed. Any previously-unknown file must undergo

the same process as for initial ingest. Associations between File Objects and Pages must be

updated. If new File Objects representing the scanning of newly identified physical pages appear,

then new Page entities within the HTRC context must be created with new unique identifiers. If

new File Objects represent additional or superseded content of previously-known Pages, then the

Page-File Object associations must be updated accordingly. It may not be possible to determine

this with 100% reliability; e.g. if all of the File Objects associated with a Page that happened to

have an order value 5 are replaced by new ones, it will be difficult to tell if the old Page’s content

was completely removed and replaced with entirely different content, or if new scans and OCR

text was simply provided. However, reasonable heuristics seem achievable.

Sequence number (i.e., order value) mapping to Pages must be updated. If it is believed that a

Page has been added or deleted, or that Pages have been reordered, then that should be noted.

Such a change should be detectable by the values contained with the corresponding file element’s

checksum attribute in the METS file but, see the note about heuristics immediately above.

To fulfill these tasks, corresponding records are inserted into aforementioned tables and along the

way UUIDs are minted. Using Tables 1, 2 and 3 as an example, on 03-08-2014, a new Volume

‘mdp.1234567’ is ingested into Cassandra and persistent identifiers for Pages and File Objects are

minted and corresponding records are inserted into RDBMS. A File Object ‘hjkl.txt’ representing

a Page (whose assigned id is ‘222-333’) within this Volume is assigned id ‘5678’ and a record

of [‘222-333’, ‘5678’, ‘03-08-2014’, ‘03-08-2014’] (in the order of ‘pageID’, ‘fileID’,

‘accessionDate’ and ‘deaccessionDate’) is inserted into Table 3. On dates ‘04-15-2014’ and ‘05-

1-2014’, we perform rsync respectively and get a new METS file. However, by checking the MD5

field within the METS for Page ‘5678’ or by other auxiliary means, we are assured that Page

‘5678’ doesn’t change. The corresponding record is updated to [‘222-333’, ‘5678’, ‘03-08-2014’,

‘04-15-2014’] and [‘222-333’, ‘5678’, ‘03-08-2014’, ‘05-01-2014’], respectively. On ‘06-18-

2014’, we perform yet another rsync and detect that the checksum of Page ‘5678’ has changed,

though the filename is still ‘hjkl.txt’. Accordingly, we mint a persistent ID ‘6789’ for this new file

and record [‘222-333’, ‘6789’, ‘06-18-2014’, ‘06-18-2014’] is inserted into table 3.

Estimate of person time

Design and implement database

People Hours

Task Time

Design schemas for RDBMS and graph database, generate and ingest dummy data. 1 week

Performance evaluation between RDBMS and graph database. 1.5 weeks

Decision making on which database to use, schema refine, performance tuning. 1 week

Design and implement identifier minting system

People Hours

Task Time

Modify Volume/Page ingestion; implement detection algorithm that detects changes in METs; implement JDBC or

graph DB operations that insert corresponding records into database. Perform debug and functionality test.

 2.5 weeks

Implement code that mints identifiers for existing Volumes in Cassandra; run the code and insert corresponding

records into RDBMS or graph DB.

 2 weeks

Extend existing DataAPI

People Hours

Task Time

Design and implement new RESTful calls to fulfill user queries that contain point-in-time info in resource request;

and calls that request identifiers, e.g., query minted id for a Page based on a sequence number.

 2.5 weeks

Design other RESTful calls that retrieve, query and insert records for other HTRC data assets, e.g. Workset and

software packages.

 2 weeks

Considering Persistent & Unique Identifiers for Additional HTRC Entities

Within the HTRC milieu there are two additional entities that are of great import to both scholars

and the HTRC’s internal infrastructure: Worksets and Analytics Modules. Both of these entities

are very different in nature from the Pages and File Objects discussed above. While it is tempting

to include them within the same workflows that mint UUIDs for both Pages and File Objects it is

important to keep in mind that both entities have their own distinct workflows and storage

infrastructure. Rather than try to shoehorn Worksets and Analytics Modules into the ingestion

workflows described above, we recommend the creation of a pair of identifier schema that are

specific to these two entities within the HTRC context.

Identifiers for Worksets

Worksets are identified by [workset_name]@[author_username]/version/[version_number] For

example, AncientGreek@miao/version/1. To refer dynamically to the most recent version, the

version element can be omitted, as in AncientGreek@miao. This could be further abstracted with

a handle service, as an optional layer.

Estimate of person time

Implement version controls for Worksets

People Hours

Task Time

Modify settings in the WSO2 Governance Registry to turn on versioning for Worksets, including testing and evaluating

storage implications.

2 days

Identifiers for Analytic Modules and other Software Assets

All software that is considered to be an HTRC data asset and is to be given an HTRC identifier is

located in HTRC’s central, authoritative source control repository system –

https://github.com/htrc. The identifier scheme then would be service/software block

name/version. For example,

 https://github.com/htrc/HTRC-Data-Capsules/commit/123abc456 identifies the HTRC Data

Capsule software at a particular point in time. To refer dynamically to the most recent version,

the commit element can be omitted, as in https://github.com/htrc/HTRC-Data-Capsules. This

could be further abstracted with a handle service, as an optional layer

Estimate of person time

Extend GitHub implementation to also manage Analytics Modules

People Hours

Task Time

Check all Analytic Modules and other HTRC Software Projects into GitHub 2 days

HTRC Service Layers

Data API & Other Layered Services

It is clear that the adoption of all of the measures described above will necessitate changes be made

to the HTRC’s current Data API service. At present the Data API returns entire Volumes from

Cassandra or specific Pages given their sequence numbers. The Data API has to be extended to be

able to access Volume Pages, given identifiers for Pages or text/image files.

In addition, the Data API is extended to provide the following services.

 Content negotiation: Given a Page identifier, one might request a specific file by asking

for that Page with a custom content type request, such as ocrText\base, pageImage\base,

pageImage\methodX, or ocrText\methodX. That should make the resource available

(subject to security considerations, of course), and should also make the direct identifier

evident. The current default is effectively something like ocrText\base.

 Sequence or Page-flipping: Given a Volume, a user might navigate to a Page by its

sequence number. It should be possible for a user to retrieve a persistent Page identifier for

a sequence-located Page.

 Time-based negotiation: Given a Volume or a Page, it should be feasible for the user to

request resources relative to a point in time, using negotiation such as Memento. Just as

with specific identifiers, a service might report that the resource from the requested time is

no longer available, or might refer a user to another service where the resource can be

found. If the resource is available, its persistent identifier should be available to the user.

All of these services are facilitated by Tables 1, 2, and 3 above. For example, time-based

negotiation for a Page identifier translates into a lookup in Table 2. If the version of the Page at

the specified time is also part of the current Volume version in Cassandra, then its contents can be

returned, otherwise we notify the client that it is no longer available. Time-based negotiation for

Volumes is achieved as follows: given a Volume V and a timestamp t, obtain the list L of Page

identifiers for the Pages of the desired version of V, say the latest version before time t, from Table

2; use time-based negotiation for Pages in L to construct Volume V at time t.

Estimate of person time

Extend the Data API

People Hours

Task Time

Extensions to the Data API including negotiated services. 3 weeks

Resolution and Maintenance of HTRC Identifiers

Associating persistent identifiers with different HTRC data assets requires the maintenance of

information needed to look up such identifiers. Given an identifier, one should be able to look it

up and determine (a) if it refers to a valid HTRC entity that is available, and how to access this

entity, (b) if it refers to a valid HTRC entity that is no longer available, or (c) if it is not a valid

identifier. The following table might be used to maintain such information.

Table 4: RDBMS table supporting HTRC identifier resolution service

Id Resource type Start date End date Access information

AncientGreek@miao Workset 02/17/2014,

12:24:07GMT

 <Registry, server htrc2.pti.indiana.edu,

path /htrc/miao/Worksets/AncientGreek>

AncientGreek@miao.v1 Workset 02/17/2014,

12:24:07GMT

 <Registry, server htrc2.pti.indiana.edu,

path /htrc/miao/Worksets/AncientGreek,

version 1>

EarlyDickens@userx Workset 02/05/2014,

10:10:34GMT

02/27/2014,

09:31:24GMT

<Registry, server htrc2.pti.indiana.edu,

path /htrc/userx/Worksets/EarlyDickens>

github.com/htrc/HTRC-Data-

Capsules

Software 02/01/2014,

12:20:00GMT

 <https://github.com, path htrc/HTRC-

Data-Capsules>

github.com/htrc/HTRC-Data-

Capsules/commit/894ca...

Software 02/01/2014,

12:20:00GMT

 <https://github.com, path htrc/HTRC-

Data-Capsules/commit/894ca...>

The access information column contains data in JSON or XML or any other suitable format,

describing where HTRC data resources are located and how they may be accessed. Note that

different resources may have different methods of access; also, we might want to restrict access to

the actual data resource and return only metadata for the resource. The services that write into this

database include the workset builder and tools to gather information on software commits into

GitHub.

The information in Table 4 is used to efficiently resolve identifiers of HTRC data assets, including

those that are no longer available. Identifiers for Volumes may be resolved either through

Cassandra or the HathiTrust handle service for Volumes, Identifiers for pages (logical leaves), and

text/image files of pages are resolved through tables 2 and 3.

In addition to efficient identifier resolution, table 4 also ensures uniqueness of identifiers. This is

done by maintaining information for every identifier created in HTRC, including those that refer

to resources that might have been deleted or are no longer available, e.g., a user Workset that was

deleted after some period of use. Any attempt to reuse an existing identifier is easily spotted and

prevented.

The above information could be maintained in an RDBMS table as shown above or as nodes in a

graph database. The latter extends easily to use cases involving graph representations of logical

groupings of texts or other entities (described in the NSF BIGDATA grant proposal), or Worksets

containing Volumes, Pages, and File Objects. We would need to add identifiers for Volumes,

Pages, and Files as needed to the database. An example is shown below in Figure 2. Initially, the

database contains only nodes representing HTRC data assets. Edges are added as logical groupings

of entities are discovered.

Figure 2: Abstract graph representation of citation mappings

The information in the above RDBMS table or graph database is used by the HTRC local handle

service to efficiently resolve identifiers of HTRC data assets, including those that are no longer

available. In addition to efficient identifier resolution, this table also ensures that identifiers are

not reused by maintaining information about identifiers that refer to assets that might have existed

at some earlier point in time but have been deleted since, e.g., a user Workset that was deleted after

some period of use.

Resolution of ingest-date-based versions of Volumes and Pages is performed by layered services

for time-based negotiation for the same. For example, if the HTRC local handle service were to

receive "mdp.123456789/date/2014-01-01", it would first ensure that mdp.123456789 is a valid

identifier by looking it up in the above database. If it is a valid identifier, then a call is made to the

time-based layered service for Volumes, with arguments mdp.123456789, 2014-01-01, to try and

obtain the version of the Volume corresponding to the given ingest date. For Volumes, if we store

only the latest versions in Cassandra, reconstruction of old Volume versions is feasible if

subsequent changes only involve addition or reordering of Pages, and not deletion or rescan or re-

OCR of Pages.

Different HTRC services write to the aforementioned database. The initial ingest into Cassandra

that creates Page identifiers and File Object identifiers, also adds these identifiers and Volume

identifiers to the database. Most writes will occur in the initial ingest phase. Subsequent ingests

may have modifications, deletions for limited numbers of Pages and files, implying limited writes

into the database. Other services such as the Workset builder and tools to gather information on

software commits into GitHub also write to the database. But these writes will be fewer in number

and sporadic.

Estimate of person time

Implementation of name resolver services for Worksets, Analytic Modules and other software

assets

People Hours

Task Time

Determine the type of database to use: RDBMS or graph database, design and implementation of the same. 3 weeks

Tool to add identifiers for existing Worksets. 1.5 weeks

Software tool to update database with identifiers for analytic modules and other software projects committed to github. 2 weeks

Handle / ARK Identifier server

A more ambitious alternative to the name resolver service described above would be to implement

a Handle or ARK Identifier server to respond to resolution requests for HTRC resources. However,

as discussed above, not all HTRC resources are going to be appropriate for the kinds of RESTful

name resolver services that a Handle or ARK Identifier server provides. As such we do not

recommend the implementation of such a server at this time. We do provide an estimate of the

steps necessary and effort involved in implementing a Handle server. This estimate does not

include the actual material costs of the server hardware.

Estimate of person time

Design & Implementation of a Handle Server for additional Web-based name resolution

services

People Hours

Task Time

Application and receipt for a unique institutional identifier 1 week

Set up and configuration of Handle server, including implementation of additional customized API services 4 weeks

Updates to existing layered services to operate with Handle server, implementation of local Handle service including

reading and interpreting data from the table, interpreting JSON/XML/other access information, directing to layered service

for date-based identifiers.

2 weeks

Modify the ingest process to update the database appropriately for Pages, files, and Volumes: add new items, handle deletes

by updating the "end date column", create access information in expected JSON/XML/other format etc.

2 days

Add above procedures to Workset builder for creation and deletion of Worksets. 1.5 weeks

Graphs and RDF-compliant Models
In the future use cases we briefly discuss experiments that envision much of the HTRC

infrastructure in the forms of graphs and ontologies. Partially this is because using graphs to model

hierarchical relationships, such as those between Worksets and Volumes, allow them to be much

more easily illustrated. The other driving reason for this is that, despite the relatively low uptake

Library Linked Open Data, and similar RDF-based data sharing initiatives, there is an increasing

need to experiment with new technologies so that we may realize new functionalities and

efficiencies within our ever-evolving technical infrastructures.

The proposals above provide a plethora of identifiers for many of the entities that any graph-based

model would likely contain. We can easily adopt additional schema, or even reuse the UUID

schema in a new context, to provide additional identifiers for graphs and graph nodes. Careful

consideration for where and when to use things such as blank nodes, data and content literals, and

management of node identity through good predicate usage will ensure that any graph or RDF-

based representation scales with the rest of the HTRC infrastructure.

Conclusion
The current HTRC infrastructure presents humanities scholars a number of opportunities for

carrying out novel research tasks. The number of opportunities created for and presented to

scholars can be increased a great deal through the adoption of persistent and unique identifiers at

the page level. Identifiers supporting Page-level entities directly facilitate scholars’ abilities to cite

their data sources and provide reproducible results for peer review. Such identifiers also partially

ameliorate some security concerns by obfuscating the direct linkages between Page-level analytics

results and the Volumes that they are derived from, e.g., as in the case of feature extraction. Finally

persistent and unique Page-level identifiers will support the growth of both new functionality and

new arenas of research within the HTRC infrastructure.

The team tasked with formulating this proposal also examined the issues of crafting persistent and

unique identifiers for additional conceptual entities within the HTRC milieu, specifically Worksets

and Analytics Modules. In both cases change management is a key factor in minting persistent

identifiers for these entities. Because both entities exist in distinct branches of the HTRC’s

architecture, no overarching benefits can be realized by reusing the same identifier minting

strategy proposed for Page-level entities. Because of this a number of alternate methods can be

considered and implemented at separate and appropriate times during the HTRC’s natural growth

processes.

We were also asked to briefly examine the question of version control. The term itself, “version

control,” is too strong of a descriptor for the actual needs of HTRC’s scholarly users. A better

notion is that the HTRC’s architecture should be “change aware.” Change awareness is highly

purposeful in that it directly supports the scholarly claim and peer review cycles. For a scholar’s

research to be reproducible it is not a necessary requirement that another scholar be able to perform

the exact same experiment and receive the exact same results. The problem is primarily with how

we commonly conceptualize “exact same results” and the expectations that frequently extend from

that conceptualization. In the course of both humanistic and scientific research, peers should never

have an expectation for receiving the “exact same results.” Rather, there should always be the

expectation that results will vary and that systems and architectures, along with a discipline’s

methodological norms, provide ready and useful means for explaining observed variations in

results. A change aware architecture plays a vital role in this process by providing researchers

information regarding when OCR text has been exchanged for different OCR text, when pages

have been rescanned, or even when entire Volumes of content have been withdrawn due to

copyright concerns.

Ultimately, the best course of action is not to adopt all of the measures proposed here whole cloth.

By using the contents of this report to inform long-term planning, various facets and aspects of

this proposal can slowly be implemented as an integrated part of the HTRC’s strategic growth.

This allows for the components of the proposal to be further developed through additional scrutiny

and consideration and will maintain a better sense of service continuity for HTRC users. Taking a

gradual, step-by-step approach towards the construction of a more robust, change aware

architecture will allow all involved in the HTRC project – architects, researchers, and scholarly

users – to realize the most benefits of engaging with the HT corpus. Adoption of persistent and

unique Page-level identifiers is a necessary and foundational first step towards this future.

References
Berners-Lee, T., Fielding, R., & Masinter, L. (2005). RFC 3986: Uniform resource identifier

(URI): Generic syntax. Network Working Group, The Internet Engineering Taskforce.

Retrieved from http://tools.ietf.org/html/rfc3986 on 1-Aug. 2014.

Fenlon, K., Senseney, M., Green, H., Battacharyya, S., Willis, C., & Downie, J. S. (2014). Scholar-

built collections: A study of user requirements for research in large-scale digital libraries.

Paper to be presented at The 77th ASIS&T Annual Meeting. 31-Oct. – 5-Nov. 2014, Seattle,

WA.

Kunze, J. & Rodgers, R. (2013). The ARK identifier scheme. Network Working Group, The

Internet Engineering Taskforce. Retrieved from http://tools.ietf.org/html/draft-kunze-ark-

18 on 1-Aug. 2014.

Leach, P., Mealling, M., & Salz, R. (2005). RFC 4122: A universally unique identifier (UUID)

URN namespace. Network Working Group, The Internet Engineering Taskforce. Retrieved

from http://tools.ietf.org/html/rfc4122 on 1-Aug. 2014.

Sun, S., Lannom, L., & Boesch, B. (2003). RFC 3650: Handle system overview. Network Working

Group, The Internet Society. Retrieved from http://www.handle.net/rfc/rfc3650.html on 1-

Aug. 2014.

Sun, S., Reilly, S., Lannom, L., & Petrone, J. (2003). RFC 3652: Handle system protocol (ver 2.1)

specification. Network Working Group, The Internet Society. Retrieved from

https://www.ietf.org/rfc/rfc3652.txt on 1-Aug. 2014.

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/draft-kunze-ark-18
http://tools.ietf.org/html/draft-kunze-ark-18
http://tools.ietf.org/html/rfc4122
http://www.handle.net/rfc/rfc3650.html
https://www.ietf.org/rfc/rfc3652.txt

