Integration of relational databases into the RDFEngine framework

Author: G.Naudts

I am in favor of a ‘native’ integration i.e. relational db records are transformed to triples and vice versa. Querying is done using the normal RDF mechanisms for querying: triple sets with variables or SPARQL format. 

Database records are transformed to triples.

EmployeeNr Name

---------------------------

167               Naudts

becomes:

[db:EmployeeNr 167^^xsd:Integer; db:Name “Naudts”].

(Suppose the db prefix is db)

An emerging problem is datatypes and their conversion. 

DB records with more than three items are converted as follows:

EmployeeNr Name Function Salary

-----------------------------------------------------

167               Naudts  Some_uri  Researcher 2000

This gives the triples:

[db:EmployeeNr 167; db:Name “Naudts”; db:Function Some_uri”; 

db:Salary 2000^^xsd:Real].

Query is eg:

[db:Name ?; db:function this_uri].

Will give the name of all employees with a funcion this_uri.

Storing triples:

:a :b :c. is stored as :

Subject Property Object

--------------------------------------

:a           :b            :c

Following higher rules it will be retrieved as:

[db:Subject :a; db:Property :b; db:Object :c].

however automatically this will become:

:a :b :c.

Querying is like normal querying; the engine must know it has to look in the triplestore in the db (and must have a description of it).

More complex formats can also be used for triplestores: see eg.

www-db.stanford.edu/~melnik/rdf/db.html
A question is:

How do we know a triple must be looked up in the database? 

Answer: we don’t; for all triples a search in the db must be done.

If the namespace of the property is a db prefix then this triple should be looked up in the table indicated by the prefix.

Format of owl descriptions:

We need a db prefix:

@prefix emp: <odbcConnection#test/employee>.

Where emp: is referring to the employee table of the test db.

(or: @prefix emp: <odbcConnection#test/>

just referring to the test db)

There is a general prefix for rdb definitions:

@prefix rdb: <uri_of_rdb_definitions>.

General definitions:

rdb:odbcDB a owl:Class. 

rdb:DSN a owl:DatatypeProperty.

rdb:userId a owl:DatatypeProperty.

rdb:password a owl:DatatypeProperty.

rdb:tripleStore a owl:Class.

rdb:table a owl:DatatypeProperty.

Examples:

Definition of a db connection:

:test a rdb:odbcDB; rdb:DSN “test”; rdb:userId “guido”; rdb:password “”.

Definition of a triplestore:

:testts1 a rdb:tripleStore; rdb:DSN “test”; rdb:userId “guido”; rdb:password “”; rdb:table “Triplestore1”.

:testts2 a rdb:tripleStore; rdb:DSN “test”; rdb:userId “guido”; rdb:password “”; rdb:table “Triplestore2”.

Handling by the inference engine:

All input triples are scanned: when a db definition is found, the characteristics are entered in a db dictionary. A list of db tables from the prefixes is made. When a triple is needed, first a check is done whether the db is connected; if not, a connection is made; then the triple is looked up in the table.

When a definition of a triplestore is met, this data are also stored in the db dictionary. Whenever a goal is matched by the engine, all triples with the same predicate will be taken from the triplestores. 

PAGE  
3

