
Model for Tabular Data and Metadata on the Web

W3C Proposed Recommendation 17 November 2015

This version:
http://www.w3.org/TR/2015/PR-tabular-data-model-20151117/

Latest published version:
http://www.w3.org/TR/tabular-data-model/

Latest editor's draft:
http://w3c.github.io/csvw/syntax/

Test suite:
http://www.w3.org/2013/csvw/tests/

Implementation report:
http://www.w3.org/2013/csvw/implementation_report.html

Previous version:
http://www.w3.org/TR/2015/CR-tabular-data-model-20150716/

Editors:
Jeni Tennison, Open Data Institute
Gregg Kellogg, Kellogg Associates

Authors:
Jeni Tennison, Open Data Institute
Gregg Kellogg, Kellogg Associates
Ivan Herman, W3C

Repository:
We are on GitHub
File a bug

Changes:
Diff to previous version
Commit history

Copyright © 2015 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and document use
rules apply.

Abstract

Tabular data is routinely transferred on the web in a variety of formats, including variants on CSV,
tab-delimited files, fixed field formats, spreadsheets, HTML tables, and SQL dumps. This document
outlines a data model, or infoset, for tabular data and metadata about that tabular data that can be
used as a basis for validation, display, or creating other formats. It also contains some non-normative
guidance for publishing tabular data as CSV and how that maps into the tabular data model.

An annotated model of tabular data can be supplemented by separate metadata about the table. This
specification defines how implementations should locate that metadata, given a file containing tabular
data. The standard syntax for that metadata is defined in [tabular-metadata]. Note, however, that
applications may have other means to create annotated tables, e.g., through some application
specific API-s; this model does not depend on the specificities described in [tabular-metadata].

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/TR/2015/PR-tabular-data-model-20151117/
http://w3c.github.io/csvw/syntax/
http://www.w3.org/2013/csvw/tests/
http://www.w3.org/2013/csvw/implementation_report.html
http://www.w3.org/TR/2015/CR-tabular-data-model-20150716/
http://theodi.org/
http://greggkellogg.net/
http://kellogg-assoc.com/
http://theodi.org/
http://greggkellogg.net/
http://kellogg-assoc.com/
http://www.w3.org/People/Ivan/
http://www.w3.org
https://github.com/w3c/csvw
https://github.com/w3c/csvw
http://www.w3.org/TR/tabular-data-model/diff.html
https://github.com/w3c/csvw/commits/gh-pages
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://ev.buaa.edu.cn/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

Status of This Document

This section describes the status of this document at the time of its publication. Other documents
may supersede this document. A list of current W3C publications and the latest revision of this
technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

The CSV on the Web Working Group was chartered to produce a recommendation "Access methods
for CSV Metadata" as well as recommendations for "Metadata vocabulary for CSV data" and
"Mapping mechanism to transforming CSV into various formats (e.g., RDF, JSON, or XML)". This
document aims to primarily satisfy the "Access methods for CSV Metadata" recommendation (see
section 5. Locating Metadata), though it also specifies an underlying model for tabular data and is
therefore a basis for the other chartered Recommendations.

This definition of CSV used in this document is based on IETF's [RFC4180] which is an Informational
RFC. The working group's expectation is that future suggestions to refine RFC 4180 will be relayed
to the IETF (e.g. around encoding and line endings) and contribute to its discussions about moving
CSV to the Standards track.

Many files containing tabular data embed metadata, for example in lines before the header row of an
otherwise standard CSV document. This specification does not define any formats for embedding
metadata within CSV files, aside from the titles of columns in the header row which is defined in
CSV. We would encourage groups that define tabular data formats to also define a mapping into the
annotated tabular data model defined in this document.

This document was published by the CSV on the Web Working Group as a Proposed
Recommendation. This document is intended to become a W3C Recommendation. The W3C
Membership and other interested parties are invited to review the document and send comments to
public-csv-wg@w3.org (subscribe, archives) through 15 December 2015. Advisory Committee
Representatives should consult their WBS questionnaires. Note that substantive technical comments
were expected during the Last Call review period that ended 30 October 2015.

Please see the Working Group's implementation report.

Publication as a Proposed Recommendation does not imply endorsement by the W3C Membership.
This is a draft document and may be updated, replaced or obsoleted by other documents at any time.
It is inappropriate to cite this document as other than work in progress.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy.
W3C maintains a public list of any patent disclosures made in connection with the deliverables of the
group; that page also includes instructions for disclosing a patent. An individual who has actual
knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the
information in accordance with section 6 of the W3C Patent Policy.

This document is governed by the 1 September 2015 W3C Process Document.

Table of Contents

1. Introduction
2. Conformance
3. Typographical conventions
4. Tabular Data Models

4.1 Table groups
4.2 Tables
4.3 Columns
4.4 Rows
4.5 Cells
4.6 Datatypes

http://www.w3.org/TR/
http://www.w3.org/2013/csvw
http://www.w3.org/2013/05/lcsv-charter.html
http://www.w3.org/2013/csvw/
mailto:public-csv-wg@w3.org
mailto:public-csv-wg-request@w3.org?subject=subscribe
http://lists.w3.org/Archives/Public/public-csv-wg/
https://www.w3.org/2002/09/wbs/myQuestionnaires
http://www.w3.org/2013/csvw/implementation_report.html
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/68238/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://www.w3.org/2015/Process-20150901/

4.6.1 Length Constraints
4.6.2 Value Constraints

5. Locating Metadata
5.1 Overriding Metadata
5.2 Link Header
5.3 Default Locations and Site-wide Location Configuration
5.4 Embedded Metadata

6. Processing Tables
6.1 Creating Annotated Tables
6.2 Metadata Compatibility
6.3 URL Normalization
6.4 Parsing Cells

6.4.1 Parsing examples
6.4.2 Formats for numeric types
6.4.3 Formats for booleans
6.4.4 Formats for dates and times
6.4.5 Formats for durations
6.4.6 Formats for other types

6.5 Presenting Tables
6.5.1 Bidirectional Tables
6.5.2 Column and row labelling

6.6 Validating Tables
6.7 Converting Tables

7. Best Practice CSV
7.1 Content Type
7.2 Encoding
7.3 Line Endings
7.4 Lines

7.4.1 Headers
7.5 Grammar

8. Parsing Tabular Data
8.1 Bidirectionality in CSV Files
8.2 Examples

8.2.1 Simple Example
8.2.1.1 Using Overriding Metadata
8.2.1.2 Using a Metadata File

8.2.2 Empty and Quoted Cells
8.2.3 Tabular Data Embedding Annotations

8.2.3.1 Naive Parsing
8.2.3.2 Parsing with Flags
8.2.3.3 Recognizing Tabular Data Formats

8.2.4 Parsing Multiple Header Lines
A. IANA Considerations
B. Existing Standards

B.1 RFC 4180
B.2 Excel

B.2.1 Saved CSV
B.2.2 Opened CSV
B.2.3 Imported CSV
B.2.4 Copied Tabular Data

B.3 Google Spreadsheets
B.3.1 Downloading CSV
B.3.2 Importing CSV

B.4 CSV Files in a Tabular Data Package
C. Acknowledgements
D. Changes from previous drafts

D.1 Changes since the candidate recommendation of 16 July 2015
D.2 Changes since the working draft of 16 April 2015
D.3 Changes since the working draft of 08 January 2015

E. References
E.1 Normative references
E.2 Informative references

1. Introduction

Tabular data is data that is structured into rows, each of which contains information about some
thing. Each row contains the same number of cells (although some of these cells may be empty),
which provide values of properties of the thing described by the row. In tabular data, cells within the
same column provide values for the same property of the things described by each row. This is what
differentiates tabular data from other line-oriented formats.

Tabular data is routinely transferred on the web in a textual format called CSV, but the definition of
CSV in practice is very loose. Some people use the term to mean any delimited text file. Others stick
more closely to the most standard definition of CSV that there is, [RFC4180]. Appendix A describes
the various ways in which CSV is defined. This specification refers to such files, as well as tab-
delimited files, fixed field formats, spreadsheets, HTML tables, and SQL dumps as tabular data
files.

In section 4. Tabular Data Models, this document defines a model for tabular data that abstracts
away from the varying syntaxes that are used for when exchanging tabular data. The model includes
annotations, or metadata, about collections of individual tables, rows, columns, and cells. These
annotations are typically supplied through separate metadata files; section 5. Locating Metadata
defines how these metadata files can be located, while [tabular-metadata] defines what they contain.

Once an annotated table has been created, it can be processed in various ways, such as display,
validation, or conversion into other formats. This processing is described in section 6. Processing
Tables.

This specification does not normatively define a format for exchanging tabular data. However, it does
provide some best practice guidelines for publishing tabular data as CSV, in section section 7. Best
Practice CSV, and for parsing both this syntax and those similar to it, in section 8. Parsing Tabular
Data.

2. Conformance

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and
notes in this specification are non-normative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, SHOULD, and SHOULD NOT are to be interpreted as described in
[RFC2119].

This specification makes use of the compact IRI Syntax; please refer to the Compact IRIs from
[JSON-LD].

This specification makes use of the following namespaces:

csvw:
http://www.w3.org/ns/csvw#

dc:
http://purl.org/dc/terms/

rdf:
http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs:
http://www.w3.org/2000/01/rdf-schema#

schema:
http://schema.org/

http://www.w3.org/TR/json-ld/#compact-iris

xsd:
http://www.w3.org/2001/XMLSchema#

3. Typographical conventions

The following typographic conventions are used in this specification:

markup
Markup (elements, attributes, properties), machine processable values (string, characters,
media types), property name, or a file name is in red-orange monospace font.

variable
A variable in pseudo-code or in an algorithm description is in italics.

definition
A definition of a term, to be used elsewhere in this or other specifications, is in bold and italics.

definition reference
A reference to a definition in this document is underlined and is also an active link to the
definition itself.

markup definition reference
A references to a definition in this document, when the reference itself is also a markup, is
underlined, red-orange monospace font, and is also an active link to the definition itself.

external definition reference
A reference to a definition in another document is underlined, in italics, and is also an active link
to the definition itself.

markup external definition reference
A reference to a definition in another document, when the reference itself is also a markup, is
underlined, in italics red-orange monospace font, and is also an active link to the definition itself.

hyperlink
A hyperlink is underlined and in blue.

[reference]
A document reference (normative or informative) is enclosed in square brackets and links to the
references section.

4. Tabular Data Models

This section defines an annotated tabular data model: a model for tables that are annotated with
metadata. Annotations provide information about the cells, rows, columns, tables, and groups of
tables with which they are associated. The values of these annotations may be lists, structured

NOTE

Notes are in light green boxes with a green left border and with a "Note" header in green.
Notes are normative or informative depending on the whether they are in a normative or
informative section, respectively.

EXAMPLE 1

Examples are in light khaki boxes, with khaki left border, and with a
numbered "Example" header in khaki. Examples are always informative.
The content of the example is in monospace font and may be syntax colored.

objects, or atomic values. Core annotations are those that affect the behavior of processors defined
in this specification, but other annotations may also be present on any of the components of the
model.

Annotations may be described directly in [tabular-metadata], be embedded in a tabular data file, or
created during the process of generating an annotated table.

String values within the tabular data model (such as column titles or cell string values) MUST contain
only Unicode characters.

4.1 Table groups

A group of tables comprises a set of annotated tables and a set of annotations that relate to that
group of tables. The core annotations of a group of tables are:

• id — an identifier for this group of tables, or null if this is undefined.
• notes — any number of additional annotations on the group of tables. This annotation may

be empty.
• tables — the list of tables in the group of tables. A group of tables MUST have one or more

tables.

Groups of tables MAY in addition have any number of annotations which provide information about
the group of tables. Annotations on a group of tables may include:

• titles or descriptions of the group of tables.
• information about the source or provenance of the group of tables.
• links to other groups of tables (e.g. to those that provide similar data from a different time

period).

When originating from [tabular-metadata], these annotations arise from common properties defined
on table group descriptions within metadata documents.

4.2 Tables

An annotated table is a table that is annotated with additional metadata. The core annotations of a
table are:

• columns — the list of columns in the table. A table MUST have one or more columns and
the order of the columns within the list is significant and MUST be preserved by applications.

• table direction — the direction in which the columns in the table should be displayed, as
described in section 6.5.1 Bidirectional Tables; the value of this annotation may also
become the value of the text direction annotation on columns and cells within the table, if
the textDirection property is set to inherit (the default).

• foreign keys — a list of foreign keys on the table, as defined in [tabular-metadata], which
may be an empty list.

• id — an identifier for this table, or null if this is undefined.
• notes — any number of additional annotations on the table. This annotation may be empty.
• rows — the list of rows in the table. A table MUST have one or more rows and the order of

the rows within the list is significant and MUST be preserved by applications.

NOTE

In this document, the term annotation refers to any metadata associated with an object in the
annotated tabular data model. These are not necessarily web annotations in the sense of
[annotation-model].

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-common-properties
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-table-group-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#cell-textDirection
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#cell-textDirection

• schema — a URL referencing a schema applied to this table, or null.
• suppress output — a boolean that indicates whether or not this table should be

suppressed in any output generated from converting the group of tables, that this table
belongs to, into another format, as described in section 6.7 Converting Tables.

• transformations — a (possibly empty) list of specifications for converting this table into
other formats, as defined in [tabular-metadata].

• url — the URL of the source of the data in the table, or null if this is undefined.

The table MAY in addition have any number of other annotations. Annotations on a table may include:

• titles or descriptions of the table,
• information about the source or provenance of the data in the table, or
• links to other tables (e.g. to indicate tables that include related information).

When originating from [tabular-metadata], these annotations arise from common properties defined
on table descriptions within metadata documents.

4.3 Columns

A column represents a vertical arrangement of cells within a table. The core annotations of a column
are:

• about URL — the about URL URI template used to create a URL identifier for each value of
cell in this column relative to the row in which it is contained, as defined in [tabular-
metadata].

• cells — the list of cells in the column. A column MUST contain one cell from each row in the
table. The order of the cells in the list MUST match the order of the rows in which they
appear within the rows for the associated table.

• datatype — the expected datatype for the values of cells in this column, as defined in
[tabular-metadata].

• default — the default value for cells whose string value is an empty string.
• lang — the code for the expected language for the values of cells in this column, expressed

in the format defined by [BCP47].
• name — the name of the column.
• null — the string or strings which cause the value of cells having string value matching any

of these values to be null.
• number — the position of the column amongst the columns for the associated table,

starting from 1.
• ordered — a boolean that indicates whether the order of values of a cell should be

preserved or not.
• property URL — the expected property URL URI template used to create a URL identifier

for the property of each value of cell in this column relative to the row in which it is
contained, as defined in [tabular-metadata].

• required — a boolean that indicates that values of cells in this column MUST NOT be empty.
• separator — a string value used to create multiple values of cells in this column by splitting

the string value on the separator.
• source number — the position of the column in the file at the url of the table, starting from

1, or null.
• suppress output — a boolean that indicates whether or not this column should be

suppressed in any output generated from converting the table, as described in section 6.7
Converting Tables.

• table — the table in which the column appears.
• text direction — the indicator of the text direction values of cells in this column, as

described in section 6.5.1 Bidirectional Tables; the value of this annotation may be derived
from the table direction annotation on the table, if the textDirection property is set to
inherit (the default).

• titles — any number of human-readable titles for the column, each of which MAY have an
associated language code as defined by [BCP47].

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-common-properties
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-table-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-uri-template-properties
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-uri-template-properties
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#cell-textDirection
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#cell-textDirection

• value URL — the expected value URL URI template used to create the URL identifier for
the value of each cell in this, as defined in [tabular-metadata].

• virtual — a boolean that indicates whether the column is a virtual column. Virtual columns
are used to extend the source data with additional empty columns to support more
advanced conversions; when this annotation is false, the column is a real column, which
exists in the source data for the table.

Columns MAY in addition have any number of other annotations, such as a description. When
originating from [tabular-metadata], these annotations arise from common properties defined on
column descriptions within metadata documents.

4.4 Rows

A row represents a horizontal arrangement of cells within a table. The core annotations of a row are:

• cells — the list of cells in the row. A row MUST contain one cell from each column in the
table. The order of the cells in the list MUST match the order of the columns in which they
appear within the table columns for the row's table.

• number — the position of the row amongst the rows for the table, starting from 1.
• primary key — a possibly empty list of cells whose values together provide a unique

identifier for this row. This is similar to the name of a column.
• titles — any number of human-readable titles for the row, each of which MAY have an

associated language code as defined by [BCP47].
• referenced rows — a possibly empty list of pairs of a foreign key and a row in a table within

the same group of tables (which may be another row in the table in which this row appears).
• source number — the position of the row in the original url of the table, starting from 1, or
null.

• table — the table in which the row appears.

Rows MAY have any number of additional annotations. The annotations on a row provide additional
metadata about the information held in the row, such as:

• the certainty of the information in that row.
• information about the source or provenance of the data in that row.

Neither this specification nor [tabular-metadata] defines a method to specify such annotations.
Implementations MAY define a method for adding annotations to rows by interpreting notes on the
table.

4.5 Cells

A cell represents a cell at the intersection of a row and a column within a table. The core annotations
of a cell are:

• about URL — an absolute URL for the entity about which this cell provides information, or
null.

• column — the column in which the cell appears; the cell MUST be in the cells for that
column.

• errors — a (possibly empty) list of validation errors generated while parsing the value of the
cell.

NOTE

Several of these annotations arise from inherited properties that may be defined within
metadata on table group, table or individual column descriptions.

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-uri-template-properties
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-inherited-properties
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-table-group-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-table-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-column-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-common-properties
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-column-description

• ordered — a boolean that, if the value of this cell is a list, indicates whether the order of that
list should be preserved or not.

• property URL — an absolute URL for the property associated with this cell, or null.
• row — the row in which the cell appears; the cell MUST be in the cells for that row.
• string value — a string that is the original syntactic representation of the value of the cell,

e.g. how the cell appears within a CSV file; this may be an empty string.
• table — the table in which the cell appears.
• text direction — which direction the text within the cell should be displayed, as described in

section 6.5.1 Bidirectional Tables; the value of this annotation may be derived from the table
direction annotation on the table, if the textDirection property is set to inherit (the
default).

• value — the semantic value of the cell; this MAY be a list of values, each of which MAY have
a datatype other than a string, MAY have a language and MAY be null. For example,
annotations might enable a processor to understand the string value of the cell as
representing a number or a date. By default, if the string value is an empty string, the
semantic value of the cell is null.

• value URL — an absolute URL for this cell's value, or null.

Cells MAY have any number of additional annotations. The annotations on a cell provide metadata
about the value held in the cell, particularly when this overrides the information provided for the
column and row that the cell falls within. Annotations on a cell might be:

• notes to aid the interpretation of the value.
• information about the source or provenance of the data in that cell.
• indication of the units of measure used within a cell.

Neither this specification nor [tabular-metadata] defines a method to specify such annotations.
Implementations MAY define a method for adding annotations to cells by interpreting notes on the
table.

NOTE

There presence or absence of quotes around a value within a CSV file is a syntactic detail that
is not reflected in the tabular data model. In other words, there is no distinction in the model
between the second value in a,,z and the second value in a,"",z.

NOTE

Several of these annotations arise from or are constructed based on inherited properties that
may be defined within metadata on table group, table or column descriptions.

NOTE

Units of measure are not a built-in part of the tabular data model. However, they can be
captured through notes or included in the converted output of tabular data through defining
datatypes with identifiers that indicate the unit of measure, using virtual columns to create
nested data structures, or using common properties to specify Data Cube attributes as defined
in [vocab-data-cube].

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#cell-textDirection
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#cell-textDirection
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-inherited-properties
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-table-group-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-table-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-column-description

4.6 Datatypes

Columns and cell values within tables may be annotated with a datatype which indicates the type of
the values obtained by parsing the string value of the cell.

Datatypes are based on a subset of those defined in [xmlschema11-2]. The annotated tabular data
model limits cell values to have datatypes as shown on the diagram:

• the datatypes defined in [xmlschema11-2] as derived from and including
xsd:anyAtomicType.

• the datatype rdf:XMLLiteral, a sub-type of xsd:string, which indicates the value is
an XML fragment.

• the datatype rdf:HTML, a sub-type of xsd:string, which indicates the value is an HTML
fragment.

• the datatype csvw:JSON, a sub-type of xsd:string, which indicates the value is
serialized JSON.

• datatypes derived from any of these datatypes.

Fig. 1 Diagram showing the built-in datatypes, based on [xmlschema11-2]; names in parentheses
denote aliases to the [xmlschema11-2] terms (see the diagram in SVG or PNG formats)

The core annotations of a datatype are:

• id — the absolute URL that identifies the datatype, or null if undefined; converters
SHOULD use this URL when serializing values of this datatype. Processors MAY use this
annotation to perform additional validation on column values using this datatype.

• base — the absolute URL that identifies the datatype from which this datatype is derived.
This MUST be the URL of a built-in datatype as listed above, or null if the datatype is
xsd:anyAtomicType. All values of the datatype MUST be valid values of the base
datatype.

• format — a string or object that defines the format of a value of this type, used when
parsing a cell string value as described in 6.4 Parsing Cells.

• length — a number that the exact length of a cell value as described in section 4.6.1 Length
Constraints.

• minimum length — a number that the minimum length of a cell value as described in
section 4.6.1 Length Constraints.

• maximum length — a number that the maximum length of a cell value as described in
section 4.6.1 Length Constraints.

• minimum — a number that the minimum valid value (inclusive) of a cell value as described
in section 4.6.2 Value Constraints.

http://www.w3.org/TR/tabular-data-model/datatypes.svg
http://www.w3.org/TR/tabular-data-model/datatypes.png

• maximum — a number that the maximum valid value (inclusive) of a cell value as
described in section 4.6.2 Value Constraints.

• minimum exclusive — a number that the minimum valid value (exclusive) of a cell value as
described in section 4.6.2 Value Constraints.

• maximum exclusive — a number that the maximum valid value (exclusive) of a cell value
as described in section 4.6.2 Value Constraints.

If the id of a datatype is that of a built-in datatype, the values of the other core annotations listed
above MUST be consistent with the values defined in [xmlschema11-2] or above. For example, if the
id is xsd:integer then the base must be xsd:decimal.

Datatypes MAY have any number of additional annotations. The annotations on a datatype provide
metadata about the datatype such as title or description. These arise from common properties
defined on datatype descriptions within metadata documents, as defined in [tabular-metadata].

4.6.1 Length Constraints

The length, minimum length and maximum length annotations indicate the exact, minimum and
maximum lengths for cell values.

The length of a value is determined as defined in [xmlschema11-2], namely as follows:

• if the value is null, its length is zero.
• if the value is a string or one of its subtypes, its length is the number of characters (ie

[UNICODE] code points) in the value.
• if the value is of a binary type, its length is the number of bytes in the binary value.

If the value is a list, the constraint applies to each element of the list.

4.6.2 Value Constraints

The minimum, maximum, minimum exclusive, and maximum exclusive annotations indicate limits on
cell values. These apply to numeric, date/time, and duration types.

Validation of cell values against these datatypes is as defined in [xmlschema11-2]. If the value is a
list, the constraint applies to each element of the list.

5. Locating Metadata

As described in section 4. Tabular Data Models, tabular data may have a number of annotations
associated with it. Here we describe the different methods that can be used to locate metadata that
provides those annotations.

In the methods of locating metadata described here, metadata is provided within a single document.
The syntax of such documents is defined in [tabular-metadata]. Metadata is located using a specific
order of precedence:

1. metadata supplied by the user of the implementation that is processing the tabular data, see
section 5.1 Overriding Metadata.

NOTE

The id annotation may reference an XSD, OWL or other datatype definition, which is not used
by this specification for validating column values, but may be useful for further processing.

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-common-properties

2. metadata in a document linked to using a Link header associated with the tabular data file,
see section 5.2 Link Header.

3. metadata located through default paths which may be overridden by a site-wide location
configuration, see section 5.3 Default Locations and Site-wide Location Configuration.

4. metadata embedded within the tabular data file itself, see section 5.4 Embedded Metadata.

Processors MUST use the first metadata found for processing a tabular data file by using overriding
metadata, if provided. Otherwise processors MUST attempt to locate the first metadata document from
the Link header or the metadata located through site-wide configuration. If no metadata is supplied
or found, processors MUST use embedded metadata. If the metadata does not originate from the
embedded metadata, validators MUST verify that the table group description within that metadata is
compatible with that in the embedded metadata, as defined in [tabular-metadata].

5.1 Overriding Metadata

Processors SHOULD provide users with the facility to provide their own metadata for tabular data files
that they process. This might be provided:

• through processor options, such as command-line options for a command-line
implementation or checkboxes in a GUI.

• by enabling the user to select an existing metadata file, which may be local or remote.
• by enabling the user to specify a series of metadata files, which are merged by the

processor and handled as if they were a single file.

For example, a processor might be invoked with:

to enable the testing of the types of values in the columns of a CSV file, or with:

to supply a schema that describes the contents of the file, against which it can be validated.

NOTE

When feasible, processors should start from a metadata file and publishers should link to
metadata files directly, rather than depend on mechanisms outlined in this section for locating
metadata from a tabular data file. Otherwise, if possible, publishers should provide a Link
header on the tabular data file as described in section 5.2 Link Header.

NOTE

If there is no site-wide location configuration, section 5.3 Default Locations and Site-wide
Location Configuration specifies default URI patterns or paths to be used to locate metadata.

EXAMPLE 2: Command-line CSV processing with column types

$ csvlint data.csv --datatypes:string,float,string,string

EXAMPLE 3: Command-line CSV processing with a schema

$ csvlint data.csv --schema:schema.json

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-table-group-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#table-group-description-compatibility

Metadata supplied in this way is called overriding, or user-supplied, metadata. Implementations
SHOULD define how any options they define are mapped into the vocabulary defined in [tabular-
metadata]. If the user selects existing metadata files, implementations MUST NOT use metadata
located through the Link header (as described in section 5.2 Link Header) or site-wide location
configuration (as described in section 5.3 Default Locations and Site-wide Location Configuration).

5.2 Link Header

If the user has not supplied a metadata file as overriding metadata, described in section 5.1
Overriding Metadata, then when retrieving a tabular data file via HTTP, processors MUST retrieve the
metadata file referenced by any Link header with:

• rel="describedby", and
• type="application/csvm+json", type="application/ld+json" or
type="application/json".

so long as this referenced metadata file describes the retrieved tabular data file (ie, contains a table
description whose url matches the request URL).

If there is more than one valid metadata file linked to through multiple Link headers, then
implementations MUST use the metadata file referenced by the last Link header.

For example, when the response to requesting a tab-separated file looks like:

an implementation must use the referenced metadata.json to supply metadata for processing the
file.

If the metadata file found at this location does not explicitly include a reference to the requested
tabular data file then it MUST be ignored. URLs MUST be normalized as described in section 6.3 URL
Normalization.

NOTE

Users should ensure that any metadata from those locations that they wish to use is explicitly
incorporated into the overriding metadata that they use to process tabular data. Processors
may provide facilities to make this easier by automatically merging metadata files from
different locations, but this specification does not define how such merging is carried out.

EXAMPLE 4: HTTP response including Link headers

HTTP/1.1 200 OK
Content-Type: text/tab-separated-values
...
Link: <metadata.json>; rel="describedBy"; type="application/csvm+json"

NOTE

The Link header of the metadata file MAY include references to the CSV files it describes,
using the describes relationship. For example, in the countries' metadata example, the
server might return the following headers:

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-table-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-table-description
https://raw.githubusercontent.com/w3c/csvw/gh-pages/examples/countries.json

5.3 Default Locations and Site-wide Location Configuration

If the user has not supplied a metadata file as overriding metadata, described in section 5.1
Overriding Metadata, and no applicable metadata file has been discovered through a Link header,
described in section 5.2 Link Header, processors MUST attempt to locate a metadata documents
through site-wide configuration.

In this case, processors MUST retrieve the file from the well-known URI /.well-known/csvm. (Well-
known URIs are defined by [RFC5785].) If no such file is located (i.e. the response results in a client
error 4xx status code or a server error 5xx status code), processors MUST proceed as if this file were
found with the following content which defines default locations:

{+url}-metadata.json
csv-metadata.json

The response to retrieving /.well-known/csvm MAY be cached, subject to cache control
directives. This includes caching an unsuccessful response such as a 404 Not Found.

This file MUST contain a URI template, as defined by [URI-TEMPLATE], on each line. Starting with
the first such URI template, processors MUST:

1. Expand the URI template, with the variable url being set to the URL of the requested
tabular data file (with any fragment component of that URL removed).

2. Resolve the resulting URL against the URL of the requested tabular data file.
3. Attempt to retrieve a metadata document at that URL.
4. If no metadata document is found at that location, or if the metadata file found at the

location does not explicitly include a reference to the relevant tabular data file, perform
these same steps on the next URI template, otherwise use that metadata document.

For example, if the tabular data file is at http://example.org/south-west/devon.csv then
processors must attempt to locate a well-known file at http://example.org/.well-known/
csvm. If that file contains:

the processor will first look for http://example.org/south-west/devon.csv.json. If there is
no metadata file in that location, it will then look for http://example.org/south-west/
csvm.json. Finally, if that also fails, it will look for http://example.org/
csvm?file=http://example.org/south-west/devon.csv.json.

If no file were found at http://example.org/.well-known/csvm, the processor will use the
default locations and try to retrieve metadata from http://example.org/south-west/

Link: <http://example.org/countries.csv>; rel="describes"; type="text/csv"
Link: <http://example.org/country_slice.csv>; rel="describes"; type="text/csv"

However, locating the metadata SHOULD NOT depend on this mechanism.

EXAMPLE 5

{+url}.json
csvm.json
/csvm?file={url}

devon.csv-metadata.json and, if unsuccessful, http://example.org/south-west/csv-
metadata.json.

5.4 Embedded Metadata

Most syntaxes for tabular data provide a facility for embedding metadata within the tabular data file
itself. The definition of a syntax for tabular data SHOULD include a description of how the syntax maps
to an annotated data model, and in particular how any embedded metadata is mapped into the
vocabulary defined in [tabular-metadata]. Parsing based on the default dialect for CSV, as described
in 8. Parsing Tabular Data, will extract column titles from the first row of a CSV file.

The results of this can be found in section 8.2.1 Simple Example.

For another example, the following tab-delimited file contains embedded metadata where it is
assumed that comments may be added using a #, and that the column types may be indicated using
a #datatype annotation:

A processor that recognises this format may be able to extract and make sense of this embedded
metadata.

6. Processing Tables

This section describes how particular types of applications should process tabular data and metadata
files.

In many cases, an application will start processing from a metadata file. In that case, the initial
metadata file is treated as overriding metadata and the application MUST NOT continue to retrieve
other available metadata about each of the tabular data files referenced by that initial metadata file
other than embedded metadata.

In other cases, applications will start from a tabular data file, such as a CSV file, and locate metadata
from that file. This metadata will be used to process the file as if the processor were starting from that
metadata file.

For example, if a validator is passed a locally authored metadata file spending.json, which
contains:

EXAMPLE 6: http://example.org/tree-ops.csv

GID,On Street,Species,Trim Cycle,Inventory Date
1,ADDISON AV,Celtis australis,Large Tree Routine Prune,10/18/2010
2,EMERSON ST,Liquidambar styraciflua,Large Tree Routine Prune,6/2/2010

EXAMPLE 7: Tab-separated file containing embedded metadata

publisher City of Palo Alto
updated 12/31/2010
#name GID on_street species trim_cycle inventory_date
#datatype string string string string date:M/D/YYYY

GID On Street Species Trim Cycle Inventory Date
1 ADDISON AV Celtis australis Large Tree Routine Prune 10/18/2010
2 EMERSON ST Liquidambar styraciflua Large Tree Routine Prune 6/2/2010

the validator would validate all the listed tables, using the locally defined schema at government-
spending.csv. It would also use the metadata embedded in the referenced CSV files; for example,
when processing http://example.org/east-sussex-2015-03.csv, it would use embedded
metadata within that file to verify that the CSV is compatible with the metadata.

If a validator is passed a tabular data file http://example.org/east-sussex-2015-03.csv,
the validator would use the metadata located from the CSV file: the first metadata file found through
the Link headers found when retrieving that file, or located through a site-wide location
configuration.

6.1 Creating Annotated Tables

After locating metadata, metadata is normalized and coerced into a single table group description.
When starting with a metadata file, this involves normalizing the provided metadata file and verifying
that the embedded metadata for each tabular data file referenced from the metadata is compatible
with the metadata. When starting with a tabular data file, this involves locating the first metadata file
as described in section 5. Locating Metadata and normalizing into a single descriptor.

If processing starts with a tabular data file, implementations:

1 Retrieve the tabular data file.

2 Retrieve the first metadata file (FM) as described in section 5. Locating Metadata:

2.1 metadata supplied by the user (see section 5.1 Overriding Metadata).

2.2 metadata referenced from a Link Header that may be returned when retrieving the
tabular data file (see section 5.2 Link Header).

2.3 metadata retrieved through a site-wide location configuration (see section 5.3 Default
Locations and Site-wide Location Configuration).

2.4 embedded metadata as defined in section 5.4 Embedded Metadata with a single
tables entry where the url property is set from that of the tabular data file.

3 Proceed as if the process starts with FM.

EXAMPLE 8: Metadata file referencing multiple tabular data files sharing a schema

{
"tableSchema": "government-spending.csv",
"tables": [{

"url": "http://example.org/east-sussex-2015-03.csv",
}, {

"url": "http://example.org/east-sussex-2015-02.csv"
}, ...
]

}

NOTE

Starting with a metadata file can remove the need to perform additional requests to locate
linked metadata, or metadata retrieved through site-wide location configuration

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#table-group-description-compatibility
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-normalized
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-table-group-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#table-group-description-compatibility

If the process starts with a metadata file:

1 Retrieve the metadata file yielding the metadata UM (which is treated as overriding metadata,
see section 5.1 Overriding Metadata).

2 Normalize UM using the process defined in Normalization in [tabular-metadata], coercing UM
into a table group description, if necessary.

3 For each table (TM) in UM in order, create one or more annotated tables:

3.1 Extract the dialect description (DD) from UM for the table associated with the tabular
data file. If there is no such dialect description, extract the first available dialect
description from a group of tables in which the tabular data file is described. Otherwise
use the default dialect description.

3.2 If using the default dialect description, override default values in DD based on HTTP
headers found when retrieving the tabular data file:

▪ If the media type from the Content-Type header is text/tab-
separated-values, set delimiter to TAB in DD.

▪ If the Content-Type header includes the header parameter with a value of
absent, set header to false in DD.

▪ If the Content-Type header includes the charset parameter, set encoding
to this value in DD.

3.3 Parse the tabular data file, using DD as a guide, to create a basic tabular data model
(T) and extract embedded metadata (EM), for example from the header line.

3.4 If a Content-Language HTTP header was found when retrieving the tabular data
file, and the value provides a single language, set the lang inherited property to this
value in TM, unless TM already has a lang inherited property.

3.5 Verify that TM is compatible with EM using the procedure defined in Table Description
Compatibility in [tabular-metadata]; if TM is not compatible with EM validators MUST raise
an error, other processors MUST generate a warning and continue processing.

3.6 Use the metadata TM to add annotations to the tabular data model T as described in
Section 2 Annotating Tables in [tabular-metadata].

6.2 Metadata Compatibility

When processing a tabular data file using metadata as discovered using section 5. Locating
Metadata, processors MUST ensure that the metadata and tabular data file are compatible, this is
typically done by extracting embedded metadata from the tabular data file and determining that the
provided or discovered metadata is compatible with the embedded metadata using the procedure
defined in Table Compatibility in [tabular-metadata].

NOTE

This specification provides a non-normative definition for parsing CSV-based
files, including the extraction of embedded metadata, in section 8. Parsing
Tabular Data. This specification does not define any syntax for embedded
metadata beyond this; whatever syntax is used, it's assumed that metadata can
be mapped to the vocabulary defined in [tabular-metadata].

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#normalization
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-table-group-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-descriptions
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-descriptions
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-delimiter
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-header
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-encoding
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#cell-language
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#cell-language
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#table-description-compatibility
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#table-description-compatibility
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#annotating-tables
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#table-description-compatibility

6.3 URL Normalization

Metadata Discovery and Compatibility involve comparing URLs. When comparing URLs, processors
MUST use Syntax-Based Normalization as defined in [RFC3968]. Processors MUST perform Scheme-
Based Normalization for HTTP (80) and HTTPS (443) and SHOULD perform Scheme-Based
Normalization for other well-known schemes.

6.4 Parsing Cells

Unlike many other data formats, tabular data is designed to be read by humans. For that reason, it's
common for data to be represented within tabular data in a human-readable way. The datatype,
default, lang, null, required, and separator annotations provide the information needed to parse the
string value of a cell into its (semantic) value annotation. This is used:

• by validators to check that the data in the table is in the expected format,
• by converters to parse the values before mapping them into values in the target of the

conversion,
• when displaying data, to map it into formats that are meaningful for those viewing the data

(as opposed to those publishing it), and
• when inputting data, to turn entered values into representations in a consistent format.

The process of parsing a cell creates a cell with annotations based on the original string value,
parsed value and other column annotations and adds the cell to the list of cells in a row and cells in a
column:

• The raw string value becomes the string value annotation on the cell.
• The ordered annotation on the column becomes the ordered annotation on the cell.
• The text direction annotation on the column becomes the text direction annotation on the

cell.
• The row becomes the row annotation on the cell.
• The column becomes the column annotation on the cell.

After parsing, the cell value can be:

• null,
• a single value with an associated optional datatype or language, or
• a sequence of such values.

The process of parsing the string value into a single value or a list of values is as follows:

1 unless the datatype base is string, json, xml, html or anyAtomicType, replace all
carriage return (#xD), line feed (#xA), and tab (#x9) characters with space characters.

2 unless the datatype base is string, json, xml, html, anyAtomicType, or
normalizedString, strip leading and trailing whitespace from the string value and replace
all instances of two or more whitespace characters with a single space character.

3 if the normalized string is an empty string, apply the remaining steps to the string given by the
column default annotation.

4 if the column separator annotation is not null and the normalized string is an empty string,
the cell value is an empty list. If the column required annotation is true, add an error to the
list of errors for the cell.

5 if the column separator annotation is not null, the cell value is a list of values; set the list
annotation on the cell to true, and create the cell value created by:

https://tools.ietf.org/html/rfc3986#section-6.2.2
https://tools.ietf.org/html/rfc3986#section-6.2.3
https://tools.ietf.org/html/rfc3986#section-6.2.3
https://tools.ietf.org/html/rfc3986#section-6.2.3
https://tools.ietf.org/html/rfc3986#section-6.2.3

5.1 if the normalized string is the same as any one of the values of the column null
annotation, then the resulting value is null.

5.2 split the normalized string at the character specified by the column separator
annotation.

5.3 unless the datatype base is string or anyAtomicType, strip leading and trailing
whitespace from these strings.

5.4 applying the remaining steps to each of the strings in turn.

6 if the string is an empty string, apply the remaining steps to the string given by the column
default annotation.

7 if the string is the same as any one of the values of the column null annotation, then the
resulting value is null. If the column separator annotation is null and the column required
annotation is true, add an error to the list of errors for the cell.

8 parse the string using the datatype format if one is specified, as described below to give a
value with an associated datatype. If the datatype base is string, or there is no datatype,
the value has an associated language from the column lang annotation. If there are any
errors, add them to the list of errors for the cell; in this case the value has a datatype of
string; if the datatype base is string, or there is no datatype, the value has an
associated language from the column lang annotation.

9 validate the value based on the length constraints described in section 4.6.1 Length
Constraints, the value constraints described in section 4.6.2 Value Constraints and the
datatype format annotation if one is specified, as described below. If there are any errors, add
them to the list of errors for the cell.

The final value (or values) become the value annotation on the cell.

If there is a about URL annotation on the column, it becomes the about URL annotation on the cell,
after being transformed into an absolute URL as described in URI Template Properties of [tabular-
metadata].

If there is a property URL annotation on the column, it becomes the property URL annotation on the
cell, after being transformed into an absolute URL as described in URI Template Properties of
[tabular-metadata].

If there is a value URL annotation on the column, it becomes the value URL annotation on the cell,
after being transformed into an absolute URL as described in URI Template Properties of [tabular-
metadata]. The value URL annotation is null if the cell value is null and the column virtual
annotation is false.

6.4.1 Parsing examples

This section is non-normative.

When datatype annotation is available, the value of a cell is the same as its string value. For
example, a cell with a string value of "99" would similarly have the (semantic) value "99".

If a datatype base is provided for the cell, that is used to create a (semantic) value for the cell. For
example, if the metadata contains:

EXAMPLE 9

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#uri-template-properties
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#uri-template-properties
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#uri-template-properties

for the cell with the string value "99" then the value of that cell will be the integer 99. A cell whose
string value was not a valid integer (such as "one" or "1.0") would be assigned that string value as
its (semantic) value annotation, but also have a validation error listed in its errors annotation.

Sometimes data uses special codes to indicate unknown or null values. For example, a particular
column might contain a number that is expected to be between 1 and 10, with the string 99 used in
the original tabular data file to indicate a null value. The metadata for such a column would include:

In this case, a cell with a string value of "5" would have the (semantic) value of the integer 5; a cell
with a string value of "99" would have the value null.

Similarly, a cell may be assigned a default value if the string value for the cell is empty. A
configuration such as:

In this case, a cell whose string value is "" would be assigned the value of the integer 5. A cell
whose string value contains whitespace, such as a single tab character, would also be assigned the
value of the integer 5: when the datatype is something other than string or anyAtomicType,
leading and trailing whitespace is stripped from string values before the remainder of the processing
is carried out.

Cells can contain sequences of values. For example, a cell might have the string value "1 5 7.0".
In this case, the separator is a space character. The appropriate configuration would be:

"datatype": "integer"

EXAMPLE 10

"datatype": {
"base": "integer",
"minimum": 1,
"maximum": 10

},
"null": "99"

EXAMPLE 11

"datatype": {
"base": "integer",
"minimum": 1,
"maximum": 10

},
"default": "5"

EXAMPLE 12

"datatype": {
"base": "integer",
"minimum": 1,
"maximum": 10

},

and this would mean that the cell's value would be an array containing two integers and a string: [1,
5, "7.0"]. The final value of the array is a string because it is not a valid integer; the cell's errors
annotation will also contain a validation error.

Also, with this configuration, if the string value of the cell were "" (i.e. it was an empty cell) the value
of the cell would be an empty list.

A cell value can be inserted into a URL created using a URI template property such as valueUrl.
For example, if a cell with the string value "1 5 7.0" were in a column named values, defined
with:

then after expansion of the URI template, the resulting valueUrl would be
?values=1.0,5.0,7.0. The canonical representations of the decimal values are used within the
URL.

6.4.2 Formats for numeric types

By default, numeric values must be in the formats defined in [xmlschema11-2]. It is not uncommon
for numbers within tabular data to be formatted for human consumption, which may involve using
commas for decimal points, grouping digits in the number using commas, or adding percent signs to
the number.

If the datatype base is a numeric type, the datatype format annotation indicates the expected format
for that number. Its value MUST be either a single string or an object with one or more of the
properties:

decimalChar
A string whose value is used to represent a decimal point within the number. The default value
is ".". If the supplied value is not a string, implementations MUST issue a warning and proceed
as if the property had not been specified.

groupChar
A string whose value is used to group digits within the number. The default value is null. If the
supplied value is not a string, implementations MUST issue a warning and proceed as if the
property had not been specified.

pattern
A number format pattern as defined in [UAX35]. Implementations MUST recognise number
format patterns containing the symbols 0, #, the specified decimalChar (or "." if unspecified),
the specified groupChar (or "," if unspecified), E, +, % and ‰. Implementations MAY additionally
recognise number format patterns containing other special pattern characters defined in
[UAX35]. If the supplied value is not a string, or if it contains an invalid number format pattern or
uses special pattern characters that the implementation does not recognise, implementations
MUST issue a warning and proceed as if the property had not been specified.

"default": "5",
"separator": " "

EXAMPLE 13

"datatype": "decimal",
"separator": " ",
"valueUrl": "{?values}"

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-uri-template-properties
http://www.unicode.org/reports/tr35/tr35-numbers.html#Number_Format_Patterns
http://www.unicode.org/reports/tr35/tr35-numbers.html#Special_Pattern_Characters
http://www.unicode.org/reports/tr35/tr35-numbers.html#Number_Format_Patterns
http://www.unicode.org/reports/tr35/tr35-numbers.html#Special_Pattern_Characters

If the datatype format annotation is a single string, this is interpreted in the same way as if it were an
object with a pattern property whose value is that string.

If the groupChar is specified, but no pattern is supplied, when parsing the string value of a cell
against this format specification, implementations MUST recognise and parse numbers that consist of:

1. an optional + or - sign,
2. followed by a decimal digit (0-9),
3. followed by any number of decimal digits (0-9) and the string specified as the groupChar,
4. followed by an optional decimalChar followed by one or more decimal digits (0-9),
5. followed by an optional exponent, consisting of an E followed by an optional + or - sign

followed by one or more decimal digits (0-9), or
6. followed by an optional percent (%) or per-mille (‰) sign.

or that are one of the special values:

1. NaN,
2. INF, or
3. -INF.

Implementations MAY also recognise numeric values that are in any of the standard-decimal,
standard-percent or standard-scientific formats listed in the Unicode Common Locale Data
Repository.

Implementations MUST add a validation error to the errors annotation for the cell, and set the cell
value to a string rather than a number if the string being parsed:

• is not in the format specified in the pattern, if one is defined
• otherwise, if the string

◦ does not meet the numeric format defined above,
◦ contains two consecutive groupChar strings,

• contains the decimalChar, if the datatype base is integer or one of its sub-types,
• contains an exponent, if the datatype base is decimal or one of its sub-types, or
• is one of the special values NaN, INF, or -INF, if the datatype base is decimal or one of

its sub-types.

Implementations MUST use the sign, exponent, percent, and per-mille signs when parsing the string
value of a cell to provide the value of the cell. For example, the string value "-25%" must be
interpreted as -0.25 and the string value "1E6" as 1000000.

6.4.3 Formats for booleans

Boolean values may be represented in many ways aside from the standard 1 and 0 or true and
false.

If the datatype base for a cell is boolean, the datatype format annotation provides the true value
followed by the false value, separated by |. For example if format is Y|N then cells must hold either
Y or N with Y meaning true and N meaning false. If the format does not follow this syntax,
implementations MUST issue a warning and proceed as if no format had been provided.

The resulting cell value will be one or more boolean true or false values.

http://www.unicode.org/cldr/charts/latest/by_type/numbers.number_formatting_patterns.html
http://www.unicode.org/cldr/charts/latest/by_type/numbers.number_formatting_patterns.html

6.4.4 Formats for dates and times

By default, dates and times are assumed to be in the format defined in [xmlschema11-2]. However
dates and times are commonly represented in tabular data in other formats.

If the datatype base is a date or time type, the datatype format annotation indicates the expected
format for that date or time.

The supported date and time format patterns listed here are expressed in terms of the date field
symbols defined in [UAX35]. These formats MUST be recognised by implementations and MUST be
interpreted as defined in that specification. Implementations MAY additionally recognise other date
format patterns. Implementations MUST issue a warning if the date format pattern is invalid or not
recognised and proceed as if no date format pattern had been provided.

The following date format patterns MUST be recognized by implementations:

• yyyy-MM-dd e.g., 2015-03-22
• yyyyMMdd e.g., 20150322
• dd-MM-yyyy e.g., 22-03-2015
• d-M-yyyy e.g., 22-3-2015
• MM-dd-yyyy e.g., 03-22-2015
• M-d-yyyy e.g., 3-22-2015
• dd/MM/yyyy e.g., 22/03/2015
• d/M/yyyy e.g., 22/3/2015
• MM/dd/yyyy e.g., 03/22/2015
• M/d/yyyy e.g., 3/22/2015
• dd.MM.yyyy e.g., 22.03.2015
• d.M.yyyy e.g., 22.3.2015
• MM.dd.yyyy e.g., 03.22.2015
• M.d.yyyy e.g., 3.22.2015

The following time format patterns MUST be recognized by implementations:

• HH:mm:ss.S with one or more trailing S characters indicating the maximum number of
fractional seconds e.g., HH:mm:ss.SSS for 15:02:37.143

• HH:mm:ss e.g., 15:02:37
• HHmmss e.g., 150237
• HH:mm e.g., 15:02
• HHmm e.g., 1502

The following date/time format patterns MUST be recognized by implementations:

• yyyy-MM-ddTHH:mm:ss.S with one or more trailing S characters indicating the maximum
number of fractional seconds e.g., yyyy-MM-ddTHH:mm:ss.SSS for
2015-03-15T15:02:37.143

• yyyy-MM-ddTHH:mm:ss e.g., 2015-03-15T15:02:37
• yyyy-MM-ddTHH:mm e.g., 2015-03-15T15:02

NOTE

For interoperability, authors of metadata documents SHOULD use only the formats listed in this
section.

http://www.unicode.org/reports/tr35/tr35-dates.html#Date_Field_Symbol_Table
http://www.unicode.org/reports/tr35/tr35-dates.html#Date_Field_Symbol_Table
http://www.unicode.org/reports/tr35/tr35-dates.html#Date_Format_Patterns
http://www.unicode.org/reports/tr35/tr35-dates.html#Date_Format_Patterns

• any of the date formats above, followed by a single space, followed by any of the time
formats above, e.g., M/d/yyyy HH:mm for 3/22/2015 15:02 or dd.MM.yyyy
HH:mm:ss for 22.03.2015 15:02:37

Implementations MUST also recognise date, time, and date/time format patterns that end with
timezone markers consisting of between one and three x or X characters, possibly after a single
space. These MUST be interpreted as follows:

• X e.g., -08, +0530, or Z (minutes are optional)
• XX e.g., -0800, +0530, or Z
• XXX e.g., -08:00, +05:30, or Z
• x e.g., -08 or +0530 (Z is not permitted)
• xx e.g., -0800 or +0530 (Z is not permitted)
• xxx e.g., -08:00 or +05:30 (Z is not permitted)

For example, date format patterns could include yyyy-MM-ddTHH:mm:ssXXX for
2015-03-15T15:02:37Z or 2015-03-15T15:02:37-05:00, or HH:mm x for 15:02 -05.

The cell value will one or more dates/time values extracted using the format.

6.4.5 Formats for durations

Durations MUST be formatted and interpreted as defined in [xmlschema11-2], using the [ISO8601]
format -?PnYnMnDTnHnMnS. For example, the duration P1Y1D is used for a year and a day; the
duration PT2H30M for 2 hours and 30 minutes.

If the datatype base is a duration type, the datatype format annotation provides a regular expression
for the string values, with syntax and processing defined by [ECMASCRIPT]. If the supplied value is
not a valid regular expression, implementations MUST issue a warning and proceed as if no format
had been provided.

The cell value will be one or more durations extracted using the format.

6.4.6 Formats for other types

If the datatype base is not numeric, boolean, a date/time type, or a duration type, the datatype
format annotation provides a regular expression for the string values, with syntax and processing

NOTE

For simplicity, this version of this standard does not support abbreviated or full month or day
names, or double digit years. Future versions of this standard may support other date and time
formats, or general purpose date/time pattern strings. Authors of schemas SHOULD use
appropriate regular expressions, along with the string datatype, for dates and times that use
a format other than that specified here.

NOTE

Authors are encouraged to be conservative in the regular expressions that they use, sticking to
the basic features of regular expressions that are likely to be supported across
implementations.

defined by [ECMASCRIPT]. If the supplied value is not a valid regular expression, implementations
MUST issue a warning and proceed as if no format had been provided.

Values that are labelled as html, xml, or json SHOULD NOT be validated against those formats.

6.5 Presenting Tables

This section is non-normative.

When presenting tables, implementations should:

• use the table direction annotation on each table, and the text direction annotation on each
cell, to determine the ordering of columns and characters within cells, as described in
section 6.5.1 Bidirectional Tables

• use the titles annotation on each column to provide a header for the column, selecting the
first title in a language based on the user's locale and preferences, as described in section
6.5.2 Column and row labelling

• add links to headers based on the property URLs of the cells in the first row of the table
• present cell values, particularly boolean, numeric and date/time values, in a lexical form

based on the user's locale and preferences
• add links to the presentation of rows and cells based on the about URL and value URL

annotations on cells
• highlight or otherwise indicate cells with errors
• provide a way of viewing non-core annotations on table groups, tables, columns, rows and

cells
• provide links to download the raw tabular data file that is being displayed

6.5.1 Bidirectional Tables

There are two levels of bidirectionality to consider when displaying tables: the directionality of the
table (i.e., whether the columns should be arranged left-to-right or right-to-left) and the directionality
of the content of individual cells.

The table direction annotation on the table provides information about the desired display of the
columns in the table. If table direction is ltr then the first column should be displayed on the left and
the last column on the right. If table direction is rtl then the first column should be displayed on the
right and the last column on the left.

If table direction is auto then tables should be displayed with attention to the bidirectionality of the
content of the cells in the table. Specifically, the values of the cells in the table should be scanned

NOTE

Authors are encouraged to be conservative in the regular expressions that they use, sticking to
the basic features of regular expressions that are likely to be supported across
implementations.

NOTE

Metadata creators who wish to check the syntax of HTML, XML, or JSON within tabular data
should use the datatype format annotation to specify a regular expression against which such
values will be tested.

breadth first: from the first cell in the first column through to the last cell in the first row, down to the
last cell in the last column. If the first character in the table with a strong type as defined in [BIDI]
indicates a RTL directionality, the table should be displayed with the first column on the right and the
last column on the left. Otherwise, the table should be displayed with the first column on the left and
the last column on the right. Characters such as whitespace, quotes, commas, and numbers do not
have a strong type, and therefore are skipped when identifying the character that determines the
directionality of the table.

Implementations should enable user preferences to override the indicated metadata about the
directionality of the table.

Once the directionality of the table has been determined, each cell within the table should be
considered as a separate paragraph, as defined by the Unicode Bidirectional Algorithm (UBA) in
[BIDI]. The directionality for the cell is determined by looking at the text direction annotation for the
cell, as follows:

1. If the text direction is ltr then the base direction for the cell content should be set to left-to-
right.

2. If the text direction is rtl then the base direction for the cell content should be set to right-
to-left.

3. If the text direction is auto then the base direction for the cell content should be set to the
direction determined by the first character in the cell with a strong type as defined in [BIDI].

When the titles of a column are displayed, these should be displayed in the direction determined by
the first character in the title with a strong type as defined in [BIDI]. Titles for the same column in
different languages may be displayed in different directions.

6.5.2 Column and row labelling

The labelling of columns and rows helps those who are attempting to understand the content of a
table to grasp what a particular cell means. Implementations should present appropriate titles for
columns, and ensure that the most important information in a row is kept apparent to the user, to aid
their understanding. For example:

• a table presented on the screen might retain certain columns in view so that readers can
easily glance at the identifying information in each row

• as the user moves focus into a cell, screen readers announce a label for the new column if
the user has changed column, or for the new row if the user has changed row

When labelling a column, either on the screen or aurally, implementations should use the first
available of:

1. the column's titles in the preferred language of the user, or with an undefined language if
there is no title available in a preferred language; there may be multiple such titles in which
case all should be announced

2. the column's name
3. the column's number

When labelling a row, either on the screen or aurally, implementations should use the first available
of:

NOTE

If the textDirection property in metadata has the value "inherit", the text direction
annotation for a cell inherits its value from the table direction annotation on the table.

http://unicode.org/reports/tr9/#Bidirectional_Character_Types
http://unicode.org/reports/tr9/#The_Paragraph_Level
http://unicode.org/reports/tr9/#Bidirectional_Character_Types
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#cell-textDirection
http://unicode.org/reports/tr9/#Bidirectional_Character_Types

1. the row's titles in the preferred language of the user, or with an undefined language if there
is no title available in a preferred language; there may be multiple such titles in which case
all should be announced

2. the values of the cells in the row's primary key
3. the row's number

6.6 Validating Tables

Validators test whether given tabular data files adhere to the structure defined within a schema.
Validators MUST raise errors (and halt processing) and issue warnings (and continue processing) as
defined in [tabular-metadata]. In addition, validators MUST raise errors but MAY continue validating in
the following situations:

• if the table description is not compatible with the embedded metadata extracted from the
tabular data file, as defined in Table Compatibility in [tabular-metadata].

• if there is more than one row with the same primary key, that is where the cells listed for the
primary key for the row have the same values as the cells listed for the primary key for
another row,

• for each row that does not have a unique referenced row for each of the foreign keys on the
table in which the row appears, or

• for each error on each cell.

6.7 Converting Tables

Conversions of tabular data to other formats operate over a annotated table constructed as defined
in Annotating Tables in [tabular-metadata]. The mechanics of these conversions to other formats are
defined in other specifications such as [csv2json] and [csv2rdf].

Conversion specifications MUST define a default mapping from an annotated table that lacks any
annotations (i.e., that is equivalent to an un-annotated table).

Conversion specifications MUST use the property value of the propertyUrl of a column as the
basis for naming machine-readable fields in the target format, such as the name of the equivalent
element or attribute in XML, property in JSON or property URI in RDF.

Conversion specifications MAY use any of the annotations found on an annotated table group, table,
column, row or cell, including non-core annotations, to adjust the mapping into another format.

Conversion specifications MAY define additional annotations, not defined in this specification, which
are specifically used when converting to the target format of the conversion. For example, a
conversion to XML might specify a http://example.org/conversion/xml/element-or-
attribute property on columns that determines whether a particular column is represented through
an element or an attribute in the data.

7. Best Practice CSV

This section is non-normative.

There is no standard for CSV, and there are many variants of CSV used on the web today. This
section defines a method for expressing tabular data adhering to the annotated tabular data model in
CSV. Authors are encouraged to adhere to the constraints described in this section as
implementations should process such CSV files consistently.

NOTE

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-schema
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-table-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#table-description-compatibility
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#annotating-tables
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-inherited-properties
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#cell-propertyUrl
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#cell-propertyUrl

7.1 Content Type

The appropriate content type for a CSV file is text/csv. For example, when a CSV file is
transmitted via HTTP, the HTTP response should include a Content-Type header with the value
text/csv:

Content-Type: text/csv

7.2 Encoding

CSV files should be encoded using UTF-8, and should be in Unicode Normal Form C as defined in
[UAX15]. If a CSV file is not encoded using UTF-8, the encoding should be specified through the
charset parameter in the Content-Type header:

Content-Type: text/csv;charset=ISO-8859-1

7.3 Line Endings

The ends of rows in a CSV file should be CRLF (U+000D U+000A) but may be LF (U+000A). Line
endings within escaped cells are not normalised.

7.4 Lines

Each line of a CSV file should contain the same number of comma-separated values.

Values that contain commas, line endings, or double quotes should be escaped by having the entire
value wrapped in double quotes. There should not be whitespace before or after the double quotes.
Within these escaped cells, any double quotes should be escaped with two double quotes ("").

7.4.1 Headers

The first line of a CSV file should contain a comma-separated list of names of columns. This is
known as the header line and provides titles for the columns. There are no constraints on these
titles.

If a CSV file does not include a header line, this should be specified using the header parameter of
the media type:

Content-Type: text/csv;header=absent

This syntax is not compliant with text/csv as defined in [RFC4180] in that it permits line
endings other than CRLF. Supporting LF line endings is important for data formats that are
used on non-Windows platforms. However, all files that adhere to [RFC4180]'s definition of
CSV meet the constraints described in this section.

Developing a standard for CSV is outside the scope of the Working Group. The details here
aim to help shape any future standard.

7.5 Grammar

This grammar is a generalization of that defined in [RFC4180] and is included for reference only.

The EBNF used here is defined in XML 1.0 [EBNF-NOTATION].

[1]csv ::=header record+
[2]header ::=record
[3]record ::=fields #x0D? #x0A
[4]fields ::=field ("," fields)*
[5]field ::=WS* rawfield WS*
[6]rawfield::='"' QCHAR* '"' |SCHAR*
[7]QCHAR ::=[^"] |'""'
[8]SCHAR ::=[^",#x0A#x0D]
[9]WS ::=[#x20#x09]

8. Parsing Tabular Data

This section is non-normative.

As described in section 7. Best Practice CSV, there may be many formats which an application might
interpret into the tabular data model described in section 4. Tabular Data Models, including using
different separators or fixed format tables, multiple tables within a single file, or ones that have
metadata lines before a table header.

This section describes an algorithm for parsing formats that do not adhere to the constraints
described in section 7. Best Practice CSV, as well as those that do, and extracting embedded
metadata. The parsing algorithm uses the following flags. These may be set by metadata properties
found while Locating Metadata, including through user input (see Overriding Metadata), or through
the inclusion of a dialect description within a metadata file:

comment prefix
A string that, when it appears at the beginning of a row, indicates that the row is a comment that
should be associated as a rdfs:comment annotation to the table. This is set by the
commentPrefix property of a dialect description. The default is null, which means no rows
are treated as comments. A value other than null may mean that the source numbers of rows
are different from their numbers.

delimiter
The separator between cells, set by the delimiter property of a dialect description. The
default is ,.

encoding
The character encoding for the file, one of the encodings listed in [encoding], set by the
encoding property of a dialect description. The default is utf-8.

NOTE

Standardizing the parsing of CSV is outside the chartered scope of the Working Group. This
non-normative section is intended to help the creators of parsers handle the wide variety of
CSV-based formats that they may encounter due to the current lack of standardization of the
format.

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description
http://www.w3.org/TR/rdf-schema/#ch_comment
http://www.w3.org/TR/rdf-schema/#ch_comment
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-commentPrefix
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-commentPrefix
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-delimiter
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-delimiter
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-encoding
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-encoding
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description

escape character
The string that is used to escape the quote character within escaped cells, or null, set by the
doubleQuote property of a dialect description. The default is " (such that "" is used to escape
" within an escaped cell).

header row count
The number of header rows (following the skipped rows) in the file, set by the header or
headerRowCount property of a dialect description. The default is 1. A value other than 0 will
mean that the source numbers of rows will be different from their numbers.

line terminators
The strings that can be used at the end of a row, set by the lineTerminators property of a
dialect description. The default is [CRLF, LF].

quote character
The string that is used around escaped cells, or null, set by the quoteChar property of a
dialect description. The default is ".

skip blank rows
Indicates whether to ignore wholly empty rows (i.e. rows in which all the cells are empty), set by
the skipBlankRows property of a dialect description. The default is false. A value other than
false may mean that the source numbers of rows are different from their numbers.

skip columns
The number of columns to skip at the beginning of each row, set by the skipColumns property
of a dialect description. The default is 0. A value other than 0 will mean that the source numbers
of columns will be different from their numbers.

skip rows
The number of rows to skip at the beginning of the file, before a header row or tabular data, set
by the skipRows property of a dialect description. The default is 0. A value greater than 0 will
mean that the source numbers of rows will be different from their numbers.

trim
Indicates whether to trim whitespace around cells; may be true, false, start, or end, set by
the skipInitialSpace or trim property of a dialect description. The default is true.

The algorithm for using these flags to parse a document containing tabular data to create a basic
annotated tabular data model and to extract embedded metadata is as follows:

1 Create a new table T with the annotations:
◦ columns set to an empty list
◦ rows set to an empty list
◦ id set to null
◦ url set to the location of the file, if known, or null
◦ table direction set to auto
◦ suppress output set to false
◦ notes set to false
◦ foreign keys set to an empty list
◦ transformations set to an empty list

2 Create a metadata document structure M that looks like:

{
"@context": "http://www.w3.org/ns/csvw",
"rdfs:comment": []
"tableSchema": {

"columns": []
}

}

3 If the URL of the tabular data file being parsed is known, set the url property on M to that
URL.

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-doubleQuote
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-doubleQuote
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-header
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-header
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-headerRowCount
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-headerRowCount
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-lineTerminators
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-lineTerminators
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-quoteChar
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-quoteChar
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-skipBlankRows
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-skipBlankRows
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-skipColumns
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-skipColumns
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-skipRows
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-skipRows
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-skipInitialSpace
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-skipInitialSpace
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-trim
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dialect-trim
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description

4 Set source row number to 1.

5 Read the file using the encoding, as specified in [encoding], using the replacement error mode.
If the encoding is not a Unicode encoding, use a normalizing transcoder to normalize into
Unicode Normal Form C as defined in [UAX15].

6 Repeat the following the number of times indicated by skip rows:

6.1 Read a row to provide the row content.

6.2 If the comment prefix is not null and the row content begins with the comment prefix,
strip that prefix from the row content, and add the resulting string to the
M.rdfs:comment array.

6.3 Otherwise, if the row content is not an empty string, add the row content to the
M.rdfs:comment array.

6.4 Add 1 to the source row number.

7 Repeat the following the number of times indicated by header row count:

7.1 Read a row to provide the row content.

7.2 If the comment prefix is not null and the row content begins with the comment prefix,
strip that prefix from the row content, and add the resulting string to the
M.rdfs:comment array.

7.3 Otherwise, parse the row to provide a list of cell values, and:

7.3.1 Remove the first skip columns number of values from the list of cell values.

7.3.2 For each of the remaining values at index i in the list of cell values:

7.3.2.1 If the value at index i in the list of cell values is an empty string or
consists only of whitespace, do nothing.

7.3.2.2 Otherwise, if there is no column description object at index i in
M.tableSchema.columns, create a new one with a title property
whose value is an array containing a single value that is the value at
index i in the list of cell values.

7.3.2.3 Otherwise, add the value at index i in the list of cell values to the
array at M.tableSchema.columns[i].title.

7.4 Add 1 to the source row number.

8 If header row count is zero, create an empty column description object in
M.tableSchema.columns for each column in the current row after skip columns.

9 Set row number to 1.

10 While it is possible to read another row, do the following:

NOTE

The replacement error mode ensures that any non-Unicode characters within the CSV
file are replaced by U+FFFD, ensuring that strings within the tabular data model such
as column titles and cell string values only contain valid Unicode characters.

http://www.w3.org/TR/encoding/#error-mode
http://www.w3.org/TR/encoding/#error-mode

10.1 Set the source column number to 1.

10.2 Read a row to provide the row content.

10.3 If the comment prefix is not null and the row content begins with the comment
prefix, strip that prefix from the row content, and add the resulting string to the
M.rdfs:comment array.

10.4 Otherwise, parse the row to provide a list of cell values, and:

10.4.1 If all of the values in the list of cell values are empty strings, and skip blank
rows is true, add 1 to the source row number and move on to process the next
row.

10.4.2 Otherwise, create a new row R, with:
▪ table set to T
▪ number set to row number
▪ source number set to source row number
▪ primary key set to an empty list
▪ referenced rows set to an empty list
▪ cells set to an empty list

10.4.3 Append R to the rows of table T.

10.4.4 Remove the first skip columns number of values from the list of cell values
and add that number to the source column number.

10.4.5 For each of the remaining values at index i in the list of cell values (where i
starts at 1):

10.4.5.1 Identify the column C at index i within the columns of table T. If
there is no such column:

10.4.5.1.1 Create a new column C with:
▪ table set to T
▪ number set to i
▪ source number set to source column number
▪ name set to null
▪ titles set to an empty list
▪ virtual set to false
▪ suppress output set to false
▪ datatype set to string
▪ default set to an empty string
▪ lang set to und
▪ null set to an empty string
▪ ordered set to false
▪ required set to false
▪ separator set to null
▪ text direction set to auto
▪ about URL set to null
▪ property URL set to null
▪ value URL set to null
▪ cells set to an empty list

10.4.5.1.2 Append C to the columns of table T (at index i).

10.4.5.2 Create a new cell D, with:
▪ table set to T

▪ column set to C
▪ row set to R
▪ string value set to the value at index i in the list of cell values
▪ value set to the value at index i in the list of cell values
▪ errors set to an empty list
▪ text direction set to auto
▪ ordered set to false
▪ about URL set to null
▪ property URL set to null
▪ value URL set to null

10.4.5.3 Append cell D to the cells of column C.

10.4.5.4 Append cell D to the cells of row R (at index i).

10.4.5.5 Add 1 to the source column number.

10.5 Add 1 to the source row number.

11 If M.rdfs:comment is an empty array, remove the rdfs:comment property from M.

12 Return the table T and the embedded metadata M.

To read a row to provide row content, perform the following steps:

1 Set the row content to an empty string.

2 Read initial characters and process as follows:

2.1 If the string starts with the escape character followed by the quote character, append
both strings to the row content, and move on to process the string following the quote
character.

2.2 Otherwise, if the string starts with the escape character and the escape character is
not the same as the quote character, append the escape character and the single
character following it to the row content and move on to process the string following
that character.

2.3 Otherwise, if the string starts with the quote character, append the quoted value
obtained by reading a quoted value to the row content and move on to process the
string following the quoted value.

2.4 Otherwise, if the string starts with one of the line terminators, return the row content.

2.5 Otherwise, append the first character to the row content and move on to process the
string following that character.

3 If there are no more characters to read, return the row content.

To read a quoted value to provide a quoted value, perform the following steps:

1 Set the quoted value to an empty string.

2 Read the initial quote character and add a quote character to the quoted value.

3 Read initial characters and process as follows:

3.1 If the string starts with the escape character followed by the quote character, append
both strings to the quoted value, and move on to process the string following the quote
character.

3.2 Otherwise, if string starts with the escape character and the escape character is not
the same as the quote character, append the escape character and the character
following it to the quoted value and move on to process the string following that
character.

3.3 Otherwise, if the string starts with the quote character, return the quoted value.

3.4 Otherwise, append the first character to the quoted value and move on to process the
string following that character.

To parse a row to provide a list of cell values, perform the following steps:

1 Set the list of cell values to an empty list and the current cell value to an empty string.

2 Set the quoted flag to false.

3 Read initial characters and process as follows:

3.1 If the string starts with the escape character followed by the quote character, append
the quote character to the current cell value, and move on to process the string
following the quote character.

3.2 Otherwise, if the string starts with the escape character and the escape character is
not the same as the quote character, append the character following the escape
character to the current cell value and move on to process the string following that
character.

3.3 Otherwise, if the string starts with the quote character then:

3.3.1 If quoted is false, set the quoted flag to true, and move on to process the
remaining string. If the current cell value is not an empty string, raise an error.

3.3.2 Otherwise, set quoted to false, and move on to process the remaining
string. If the remaining string does not start with the delimiter, raise an error.

3.4 Otherwise, if the string starts with the delimiter, then:

3.4.1 If quoted is true, append the delimiter string to the current cell value and
move on to process the remaining string.

3.4.2 Otherwise, conditionally trim the current cell value, add the resulting trimmed
cell value to the list of cell values and move on to process the following string.

3.5 Otherwise, append the first character to the current cell value and move on to process
the remaining string.

4 If there are no more characters to read, conditionally trim the current cell value, add the
resulting trimmed cell value to the list of cell values and return the list of cell values.

To conditionally trim a cell value to provide a trimmed cell value, perform the following steps:

1 Set the trimmed cell value to the provided cell value.

2 If trim is true or start then remove any leading whitespace from the start of the trimmed cell
value and move on to the next step.

3 If trim is true or end then remove any trailing whitespace from the end of the trimmed cell
value and move on to the next step.

4 Return the trimmed cell value.

8.1 Bidirectionality in CSV Files

This section is non-normative.

Bidirectional content does not alter the definition of rows or the assignment of cells to columns.
Whether or not a CSV file contains right-to-left characters, the first column's content is the first cell of
each row, which is the text prior to the first occurrence of a comma within that row.

NOTE

This parsing algorithm does not account for the possibility of there being more than one area
of tabular data within a single CSV file.

For example, Egyptian Referendum results are available as a CSV file at
https://egelections-2011.appspot.com/Referendum2012/results/csv/EG.csv. Over the wire and in
non-Unicode-aware text editors, the CSV looks like:

قفاوم ريغ,قفاوم,ةكراشملا ةبسن,ةلطابلا تاوصألا,ةحيحصلا تاوصألا,نيبخانلا ددع,قفاوم ريغ ةبسن,قفاوم ةبسن,ةظفاحملا
"341,070","512,055",32.9,"15,224","853,125","2,639,808",60.0,40.0,ةيبويلقلا
"497,675","995,417",34.6,"24,105","1,493,092","4,383,701",66.7,33.3,ةزيجلا
"1,280,327","974,371",34.8,"36,342","2,254,698","6,580,478",43.2,56.8,ةرهاقلا
"56,670","307,839",22.8,"6,743","364,509","1,629,713",84.5,15.5,انق
...

Within this CSV file, the first column appears as the content of each line before the first comma
and is named المحافظة (appearing at the start of each row as ةظفاحملا in the
example, which is displaying the relevant characters from left to right in the order they appear "on
the wire").

The CSV translates to a table model that looks like:

Column
/ Row

column
1

column
2

column
3 column 4 column 5 column

6
column

7
column

8 column 9

column
names المحافظة نسبة موافق نسبة غير

موافق عدد الناخبين الأصوات
الصحيحة

الأصوات
الباطلة

نسبة
المشاركة موافق غير موافق

row 1 القليوبية 60.0 40.0 2,639,808 853,125 15,224 32.9 512,055 341,070
row 2 الجيزة 66.7 33.3 4,383,701 1,493,092 24,105 34.6 995,417 497,675
row 3 القاهرة 43.2 56.8 6,580,478 2,254,698 36,342 34.8 974,371 1,280,327
row 4 قنا 84.5 15.5 1,629,713 364,509 6,743 22.8 307,839 56,670

The fragment identifier #col=3 identifies the third of the columns, named نسبة غير موافق
(appearing as قفاوم ريغ ةبسن in the example).

section 6.5.1 Bidirectional Tables defines how this table model should be displayed by compliant
applications, and how metadata can affect the display. The default is for the display to be
determined by the content of the table. For example, if this CSV were turned into an HTML table
for display into a web page, it should be displayed with the first column on the right and the last
on the left, as follows:

http://referendum2012.elections.eg/results/referendum-results
https://egelections-2011.appspot.com/Referendum2012/results/csv/EG.csv

8.2 Examples

8.2.1 Simple Example

A simple CSV file that complies to the constraints described in section 7. Best Practice CSV, at
http://example.org/tree-ops.csv, might look like:

Parsing this file results in an annotated tabular data model of a single table T with five columns and
two rows. The columns have the annotations shown in the following table:

core annotationsid table number source number cells titles
C1 T 1 1 C1.1, C2.1 GID
C2 T 2 2 C1.2, C2.2 On Street
C3 T 3 3 C1.3, C2.3 Species
C4 T 4 4 C1.4, C2.4 Trim Cycle
C5 T 5 5 C1.5, C2.5 Inventory Date

The extracted embedded metadata, as defined in [tabular-metadata], would look like:

غير موافق موافق نسبة المشاركة الأصوات الباطلة الأصوات الصحيحة عدد الناخبين نسبة غير موافق نسبة موافق المحافظة
341,070 512,055 32.9 15,224 853,125 2,639,808 40.0 60.0 القليوبية
497,675 995,417 34.6 24,105 1,493,092 4,383,701 33.3 66.7 الجيزة

1,280,327 974,371 34.8 36,342 2,254,698 6,580,478 56.8 43.2 القاهرة
56,670 307,839 22.8 6,743 364,509 1,629,713 15.5 84.5 قنا

The fragment identifier #col=3 still identifies the third of the columns, named ,نسبة غير موافق
which appears in the HTML display as the third column from the right and is what those who read
right-to-left would think of as the third column.

Note that this display matches that shown on the original website.

EXAMPLE 14: http://example.org/tree-ops.csv

GID,On Street,Species,Trim Cycle,Inventory Date
1,ADDISON AV,Celtis australis,Large Tree Routine Prune,10/18/2010
2,EMERSON ST,Liquidambar styraciflua,Large Tree Routine Prune,6/2/2010

EXAMPLE 15: tree-ops.csv Embedded Metadata

{
"@type": "Table",
"url": "http://example.org/tree-ops.csv",
"tableSchema": {

"columns": [
{"titles": ["GID"]},
{"titles": ["On Street"]},
{"titles": ["Species"]},
{"titles": ["Trim Cycle"]},
{"titles": ["Inventory Date"]}

http://referendum2012.elections.eg/results/referendum-results

The rows have the annotations shown in the following table:

core annotationsid table number source number cells
R1 T 1 2 C1.1, C1.2, C1.3, C1.4, C1.5
R2 T 2 3 C2.1, C2.2, C2.3, C2.4, C2.5

The cells have the annotations shown in the following table (note that the values of all the cells in the
table are strings, denoted by the double quotes in the table below):

core annotationsid table column row string value value
C1.1 T C1 R1 "1" "1"
C1.2 T C2 R1 "ADDISON AV" "ADDISON AV"
C1.3 T C3 R1 "Celtis australis" "Celtis australis"
C1.4 T C4 R1 "Large Tree Routine Prune" "Large Tree Routine Prune"
C1.5 T C5 R1 "10/18/2010" "10/18/2010"
C2.1 T C1 R2 "2" "2"
C2.2 T C2 R2 "EMERSON ST" "EMERSON ST"
C2.3 T C3 R2 "Liquidambar styraciflua" "Liquidambar styraciflua"
C2.4 T C4 R2 "Large Tree Routine Prune" "Large Tree Routine Prune"
C2.5 T C5 R2 "6/2/2010" "6/2/2010"

8.2.1.1 Using Overriding Metadata

The tools that the consumer of this data uses may provide a mechanism for overriding the metadata
that has been provided within the file itself. For example, they might enable the consumer to add
machine-readable names to the columns, or to mark the fifth column as holding a date in the format
M/D/YYYY. These facilities are implementation defined; the code for invoking a Javascript-based
parser might look like:

]
}

}

NOTE

The source number of each row is offset by one from the number of each row because in the
source CSV file, the header line is the first line. It is possible to reconstruct a [RFC7111]
compliant reference to the first record in the original CSV file (http://example.org/tree-
ops.csv#row=2) using the value of the row's source number. This enables implementations
to retain provenance between the table model and the original file.

EXAMPLE 16: Javascript implementation configuration

data.parse({
"column-names": ["GID", "on_street", "species", "trim_cycle", "inventory_date"],
"datatypes": ["string", "string", "string", "string", "date"],

This is equivalent to a metadata file expressed in the syntax defined in [tabular-metadata], looking
like:

This would be merged with the embedded metadata found in the CSV file, providing the titles for the
columns to create:

"formats": [null,null,null,null,"M/D/YYYY"]
});

EXAMPLE 17: Equivalent metadata syntax

{
"@type": "Table",
"url": "http://example.org/tree-ops.csv",
"tableSchema": {

"columns": [{
"name": "GID",
"datatype": "string"

}, {
"name": "on_street",
"datatype": "string"

}, {
"name": "species",
"datatype": "string"

}, {
"name": "trim_cycle",
"datatype": "string"

}, {
"name": "inventory_date",
"datatype": {

"base": "date",
"format": "M/d/yyyy"

}
}]

}
}

EXAMPLE 18: Merged metadata

{
"@type": "Table",
"url": "http://example.org/tree-ops.csv",
"tableSchema": {

"columns": [{
"name": "GID",
"titles": "GID",
"datatype": "string"

}, {
"name": "on_street",
"titles": "On Street",
"datatype": "string"

}, {

The processor can then create an annotated tabular data model that included name annotations on
the columns, and datatype annotations on the cells, and created cells whose values were of
appropriate types (in the case of this Javascript implementation, the cells in the last column would be
Date objects, for example).

Assuming this kind of implementation-defined parsing, the columns would then have the annotations
shown in the following table:

core annotations
id table number source

number cells name titles datatype

C1 T 1 1 C1.1,
C2.1 GID GID string

C2 T 2 2 C1.2,
C2.2 on_street On Streetstring

C3 T 3 3 C1.3,
C2.3 species Species string

C4 T 4 4 C1.4,
C2.4 trim_cycle Trim

Cycle string

C5 T 5 5 C1.5,
C2.5 inventory_dateInventoryDate

{ "base": "date",
"format": "M/d/yyyy" }

The cells have the annotations shown in the following table. Because of the overrides provided by
the consumer to guide the parsing, and the way the parser works, the cells in the Inventory Date
column (cells C1.5 and C2.5) have values that are parsed dates rather than unparsed strings.

core annotationsid table column row string value value
C1.1 T C1 R1 "1" "1"
C1.2 T C2 R1 "ADDISON AV" "ADDISON AV"
C1.3 T C3 R1 "Celtis australis" "Celtis australis"
C1.4 T C4 R1 "Large Tree Routine Prune" "Large Tree Routine Prune"
C1.5 T C5 R1 "10/18/2010" 2010-10-18
C2.1 T C1 R2 "2" "2"
C2.2 T C2 R2 "EMERSON ST" "EMERSON ST"

"name": "species",
"titles": "Species",
"datatype": "string"

}, {
"name": "trim_cycle",
"titles": "Trim Cycle",
"datatype": "string"

}, {
"name": "inventory_date",
"titles": "Inventory Date",
"datatype": {

"base": "date",
"format": "M/d/yyyy"

}
}]

}
}

core annotationsid table column row string value value
C2.3 T C3 R2 "Liquidambar styraciflua" "Liquidambar styraciflua"
C2.4 T C4 R2 "Large Tree Routine Prune" "Large Tree Routine Prune"
C2.5 T C5 R2 "6/2/2010" 2010-06-02

8.2.1.2 Using a Metadata File

A similar set of annotations could be provided through a metadata file, located as discussed in
section 5. Locating Metadata and defined in [tabular-metadata]. For example, this might look like:

EXAMPLE 19: http://example.org/tree-ops.csv-metadata.json

{
"@context": ["http://www.w3.org/ns/csvw", {"@language": "en"}],
"url": "tree-ops.csv",
"dc:title": "Tree Operations",
"dcat:keyword": ["tree", "street", "maintenance"],
"dc:publisher": {

"schema:name": "Example Municipality",
"schema:url": {"@id": "http://example.org"}

},
"dc:license": {"@id": "http://opendefinition.org/licenses/cc-by/"},
"dc:modified": {"@value": "2010-12-31", "@type": "xsd:date"},
"tableSchema": {

"columns": [{
"name": "GID",
"titles": ["GID", "Generic Identifier"],
"dc:description": "An identifier for the operation on a tree.",
"datatype": "string",
"required": true

}, {
"name": "on_street",
"titles": "On Street",
"dc:description": "The street that the tree is on.",
"datatype": "string"

}, {
"name": "species",
"titles": "Species",
"dc:description": "The species of the tree.",
"datatype": "string"

}, {
"name": "trim_cycle",
"titles": "Trim Cycle",
"dc:description": "The operation performed on the tree.",
"datatype": "string"

}, {
"name": "inventory_date",
"titles": "Inventory Date",
"dc:description": "The date of the operation that was performed.",
"datatype": {"base": "date", "format": "M/d/yyyy"}

}],
"primaryKey": "GID",
"aboutUrl": "#gid-{GID}"

The annotated tabular data model generated from this would be more sophisticated again. The table
itself would have the following annotations:

dc:title
{"@value": "Tree Operations", "@language": "en"}

dcat:keyword
[{"@value": "tree", "@language", "en"}, {"@value": "street",
"@language": "en"}, {"@value": "maintenance", "@language": "en"}]

dc:publisher
[{ "schema:name": "Example Municipality", "schema:url": {"@id":
"http://example.org"} }]

dc:license
{"@id": "http://opendefinition.org/licenses/cc-by/"}

dc:modified
{"@value": "2010-12-31", "@type": "date"}

The columns would have the annotations shown in the following table:

core annotations other
annotationsid

table number source
number cells name titles datatype dc:description

C1 T 1 1 C1.1,
C2.1 GID

GID,
Generic
Identifier

string
An identifier
for the
operation on a
tree.

C2 T 2 2 C1.2,
C2.2 on_street On Street string

The street
that the tree
is on.

C3 T 3 3 C1.3,
C2.3 species Species string The species of

the tree.

C4 T 4 4 C1.4,
C2.4 trim_cycle Trim Cyclestring

The operation
performed on
the tree.

C5 T 5 5 C1.5,
C2.5 inventory_dateInventoryDate

{ "base":
"date",
"format":
"M/d/yyyy"
}

The date of
the operation
that was
performed.

The rows have an additional primary key annotation, as shown in the following table:

core annotationsid table number source number cells primary key
R1 T 1 2 C1.1, C1.2, C1.3, C1.4, C1.5 C1.1
R2 T 2 3 C2.1, C2.2, C2.3, C2.4, C2.5 C2.1

Thanks to the provided metadata, the cells again have the annotations shown in the following table.
The metadata file has provided the information to supplement the model with additional annotations

}
}

but also, for the Inventory Date column (cells C1.5 and C2.5), have a value that is a parsed date
rather than an unparsed string.

core annotationsid table column row string value value about URL

C1.1 T C1 R1 "1" "1" http://example.org/
tree-ops.csv#gid-1

C1.2 T C2 R1 "ADDISON AV" "ADDISON AV" http://example.org/
tree-ops.csv#gid-1

C1.3 T C3 R1
"Celtis
australis"

"Celtis
australis"

http://example.org/
tree-ops.csv#gid-1

C1.4 T C4 R1
"Large Tree
Routine Prune"

"Large Tree
Routine Prune"

http://example.org/
tree-ops.csv#gid-1

C1.5 T C5 R1 "10/18/2010" 2010-10-18 http://example.org/
tree-ops.csv#gid-1

C2.1 T C1 R2 "2" "2" http://example.org/
tree-ops.csv#gid-2

C2.2 T C2 R2 "EMERSON ST" "EMERSON ST" http://example.org/
tree-ops.csv#gid-2

C2.3 T C3 R2
"Liquidambar
styraciflua"

"Liquidambar
styraciflua"

http://example.org/
tree-ops.csv#gid-2

C2.4 T C4 R2
"Large Tree
Routine Prune"

"Large Tree
Routine Prune"

http://example.org/
tree-ops.csv#gid-2

C2.5 T C5 R2 "6/2/2010" 2010-06-02 http://example.org/
tree-ops.csv#gid-2

8.2.2 Empty and Quoted Cells

The following slightly amended CSV file contains quoted and missing cell values:

Parsing this file similarly results in an annotated tabular data model of a single table T with five
columns and two rows. The columns and rows have exactly the same annotations as previously, but
there are two null cell values for C2.2 and C2.5. Note that the quoting of values within the CSV
makes no difference to either the string value or value of the cell.

core annotationsid table column row string value value
C1.1 T C1 R1 "1" "1"
C1.2 T C2 R1 "ADDISON AV" "ADDISON AV"
C1.3 T C3 R1 "Celtis australis" "Celtis australis"
C1.4 T C4 R1 "Large Tree Routine Prune" "Large Tree Routine Prune"
C1.5 T C5 R1 "10/18/2010" "10/18/2010"
C2.1 T C1 R2 "2" "2"
C2.2 T C2 R2 "" null
C2.3 T C3 R2 "Liquidambar styraciflua" "Liquidambar styraciflua"

EXAMPLE 20: CSV file containing quoted and missing cell values

GID,On Street,Species,Trim Cycle,Inventory Date
1,ADDISON AV,"Celtis australis","Large Tree Routine Prune",10/18/2010
2,,"Liquidambar styraciflua","Large Tree Routine Prune",

core annotationsid table column row string value value
C2.4 T C4 R2 "Large Tree Routine Prune" "Large Tree Routine Prune"
C2.5 T C5 R2 "" null

8.2.3 Tabular Data Embedding Annotations

The following example illustrates some of the complexities that can be involved in parsing tabular
data, how the flags described above can be used, and how new tabular data formats could be
defined that embed additional annotations into the tabular data model.

In this example, the publishers of the data are using an internal convention to supply additional
metadata about the tabular data embedded within the file itself. They are also using a tab as a
separator rather than a comma.

8.2.3.1 Naive Parsing

Naive parsing of the above data will assume a comma separator and thus results in a single table T
with a single column and six rows. The column has the annotations shown in the following table:

core annotations
id table number source

number cells titles

C1 T 1 1 C1.1, C2.1, C3.1, C4.1,
C5.1

publisher City of Palo
Alto

The rows have the annotations shown in the following table:

core annotationsid table number source number cells
R1 T 1 2 C1.1
R2 T 2 3 C2.1
R3 T 3 4 C3.1
R4 T 4 5 C4.1
R5 T 5 6 C5.1
R6 T 6 7 C6.1

The cells have the annotations shown in the following table (note that the values of all the cells in the
table are strings, denoted by the double quotes in the table below):

core annotationsid table column row string value value
C1.1 T C1 R1 "# updated 12/31/2010" "# updated 12/31/2010"

EXAMPLE 21: Tab-separated file containing embedded metadata

publisher City of Palo Alto
updated 12/31/2010
#name GID on_street species trim_cycle inventory_date
#datatype string string string string date:M/D/YYYY

GID On Street Species Trim Cycle Inventory Date
1 ADDISON AV Celtis australis Large Tree Routine Prune 10/18/2010
2 EMERSON ST Liquidambar styraciflua Large Tree Routine Prune 6/2/2010

core annotationsid table column row string value value

C1.1 T C1 R1
"#name GID on_street species
trim_cycle inventory_date"

"#name GID on_street species
trim_cycle inventory_date"

C2.1 T C1 R2
"#datatype string string
string string date:M/D/YYYY"

"#datatype string string
string string date:M/D/YYYY"

C3.1 T C1 R3
" GID On Street Species Trim
Cycle Inventory Date"

" GID On Street Species Trim
Cycle Inventory Date"

C4.1 T C1 R4
" 1 ADDISON AV Celtis
australis Large Tree Routine
Prune 10/18/2010"

" 1 ADDISON AV Celtis
australis Large Tree Routine
Prune 10/18/2010"

C5.1 T C1 R5
" 2 EMERSON ST Liquidambar
styraciflua Large Tree
Routine Prune 6/2/2010"

" 2 EMERSON ST Liquidambar
styraciflua Large Tree
Routine Prune 6/2/2010"

8.2.3.2 Parsing with Flags

The consumer of the data may use the flags described above to create a more useful set of data
from this file. Specifically, they could set:

• delimiter to a tab character
• skip rows to 4
• skip columns to 1
• comment prefix to #

Setting these is done in an implementation-defined way. It could be done, for example, by sniffing the
contents of the file itself, through command-line options, or by embedding a dialect description into a
metadata file associated with the tabular data, which would look like:

With these flags in operation, parsing this file results in an annotated tabular data model of a single
table T with five columns and two rows which is largely the same as that created from the original
simple example described in section 8.2.1 Simple Example. There are three differences.

First, because the four skipped rows began with the comment prefix, the table itself now has four
rdfs:comment annotations, with the values:

1. publisher City of Palo Alto
2. updated 12/31/2010
3. name GID on_street species trim_cycle inventory_date
4. datatype string string string string date:M/D/YYYY

Second, because the first column has been skipped, the source number of each of the columns is
offset by one from the number of each column:

EXAMPLE 22: Dialect description

{
"delimiter": "\t",
"skipRows": 4,
"skipColumns": 1,
"commentPrefix": "#"

}

core annotationsid table number source number cells titles
C1 T 1 2 C1.1, C2.1 GID
C2 T 2 3 C1.2, C2.2 On Street
C3 T 3 4 C1.3, C2.3 Species
C4 T 4 5 C1.4, C2.4 Trim Cycle
C5 T 5 6 C1.5, C2.5 Inventory Date

Finally, because four additional rows have been skipped, the source number of each of the rows is
offset by five from the row number (the four skipped rows plus the single header row):

core annotationsid table number source number cells
R1 T 1 6 C1.1, C1.2, C1.3, C1.4, C1.5
R2 T 2 7 C2.1, C2.2, C2.3, C2.4, C2.5

8.2.3.3 Recognizing Tabular Data Formats

The conventions used in this data (invented for the purpose of this example) are in fact intended to
create an annotated tabular data model which includes named annotations on the table itself, on the
columns, and on the cells. The creator of these conventions could create a specification for this
particular tabular data syntax and register a media type for it. The specification would include
statements like:

• A tab delimiter is always used.
• The first column is always ignored.
• When the first column of a row has the value "#", the second column is the name of an

annotation on the table and the values of the remaining columns are concatenated to create
the value of that annotation.

• When the first column of a row has the value #name, the remaining cells in the row provide
a name annotation for each column in the table.

• When the first column of a row has the value #datatype, the remaining cells in the row
provide datatype/format annotations for the cells within the relevant column, and these
are interpreted to create the value for each cell in that column.

• The first row where the first column is empty is a row of headers; these provide title
annotations on the columns in the table.

• The remaining rows make up the data of the table.

Parsers that recognized the format could then build a more sophisticated annotated tabular data
model using only the embedded information in the tabular data file. They would extract embedded
metadata looking like:

EXAMPLE 23: Embedded metadata in the format of the annotated tabular model

{
"@context": "http://www.w3.org/ns/csvw",
"url": "tree-ops.csv",
"dc:publisher": "City of Palo Alto",
"dc:updated": "12/31/2010",
"tableSchema": {

"columns": [{
"name": "GID",
"titles": "GID",
"datatype": "string",

As before, the result would be a single table T with five columns and two rows. The table itself would
have two annotations:

dc:publisher
{"@value": "City of Palo Alto"}

dc:updated
{"@value": "12/31/2010"}

The columns have the annotations shown in the following table:

core annotationsid table number source number cells name titles
C1 T 1 2 C1.1, C2.1 GID GID
C2 T 2 3 C1.2, C2.2 on_street On Street
C3 T 3 4 C1.3, C2.3 species Species
C4 T 4 5 C1.4, C2.4 trim_cycle Trim Cycle
C5 T 5 6 C1.5, C2.5 inventory_date Inventory Date

The rows have the annotations shown in the following table, exactly as in previous examples:

core annotationsid table number source number cells
R1 T 1 6 C1.1, C1.2, C1.3, C1.4, C1.5
R2 T 2 7 C2.1, C2.2, C2.3, C2.4, C2.5

The cells have the annotations shown in the following table. Because of the way the particular tabular
data format has been specified, these include additional annotations but also, for the Inventory
Date column (cells C1.5 and C2.5), have a value that is a parsed date rather than an unparsed
string.

}, {
"name": "on_street",
"titles": "On Street",
"datatype": "string"

}, {
"name": "species",
"titles": "Species",
"datatype": "string"

}, {
"name": "trim_cycle",
"titles": "Trim Cycle",
"datatype": "string"

}, {
"name": "inventory_date",
"titles": "Inventory Date",
"datatype": {

"base": "date",
"format": "M/d/yyyy"

}
}]

}
}

core annotationsid table column row string value value
C1.1 T C1 R1 "1" "1"
C1.2 T C2 R1 "ADDISON AV" "ADDISON AV"
C1.3 T C3 R1 "Celtis australis" "Celtis australis"
C1.4 T C4 R1 "Large Tree Routine Prune" "Large Tree Routine Prune"
C1.5 T C5 R1 "10/18/2010" 2010-10-18
C2.1 T C1 R2 "2" "2"
C2.2 T C2 R2 "EMERSON ST" "EMERSON ST"
C2.3 T C3 R2 "Liquidambar styraciflua" "Liquidambar styraciflua"
C2.4 T C4 R2 "Large Tree Routine Prune" "Large Tree Routine Prune"
C2.5 T C5 R2 "6/2/2010" 2010-06-02

8.2.4 Parsing Multiple Header Lines

The following example shows a CSV file with multiple header lines:

Here, the first line contains some grouping titles in the first line, which are not particularly helpful. The
lines following those contain useful titles for the columns. Thus the appropriate configuration for a
dialect description is:

With this configuration, the table model contains five columns, each of which have two titles,
summarized in the following table:

core annotationsid table number source number cells titles
C1 T 1 1 C1.1, C2.1 Organization, #org
C2 T 2 2 C1.2, C2.2 Sector, #sector
C3 T 3 3 C1.3, C2.3 Subsector, #subsector
C4 T 4 4 C1.4, C2.4 Department, #adm1
C5 T 5 5 C1.5, C2.5 Municipality, #adm2

As metadata, this would look like:

EXAMPLE 24: CSV file with multiple header lines

Who,What,,Where,
Organization,Sector,Subsector,Department,Municipality
#org,#sector,#subsector,#adm1,#adm2
UNICEF,Education,Teacher training,Chocó,Quidbó
UNICEF,Education,Teacher training,Chocó,Bojayá

EXAMPLE 25: Dialect description for multiple header lines

{
"skipRows": 1,
"headerRowCount": 2

}

EXAMPLE 26: Extracted metadata

A separate metadata file could contain just the second of each of these titles, for example:

This enables people from multiple jurisdictions to use the same tabular data structures without having
to use exactly the same titles within their documents.

A. IANA Considerations

/.well-known/csvm
URI suffix:

csvm
Change controller:

W3C
Specification document(s):

This document, section 5.3 Default Locations and Site-wide Location Configuration

B. Existing Standards

This section is non-normative.

This appendix outlines various ways in which CSV is defined.

B.1 RFC 4180

[RFC4180] defines CSV with the following ABNF grammar:

{
"tableSchema": {

"columns": [
{ "titles": ["Organization", "#org"] },
{ "titles": ["Sector", "#sector"] },
{ "titles": ["Subsector", "#subsector"] },
{ "titles": ["Department", "#adm1"] },
{ "titles": ["Municipality", "#adm2"] },

]
}

}

EXAMPLE 27: Metadata file

{
"tableSchema": {

"columns": [
{ "name": "org", "titles": #org" },
{ "name": "sector", "titles": #sector" },
{ "name": "subsector", "titles": #subsector" },
{ "name": "adm1", "titles": #adm1" },
{ "name": "adm2", "titles": #adm2" },

]
}

}

file = [header CRLF] record *(CRLF record) [CRLF]
header = name *(COMMA name)
record = field *(COMMA field)
name = field
field = (escaped / non-escaped)
escaped = DQUOTE *(TEXTDATA / COMMA / CR / LF / 2DQUOTE) DQUOTE
non-escaped = *TEXTDATA
COMMA = %x2C
CR = %x0D
DQUOTE = %x22
LF = %x0A
CRLF = CR LF
TEXTDATA = %x20-21 / %x23-2B / %x2D-7E

Of particular note here are:

• The production for TEXTDATA indicates that only non-control ASCII characters are permitted
within a CSV file. This restriction is routinely ignored in practice, and is impractical on the
international web.

• Lines should be ended with CRLF. This makes it harder to produce CSV files on Unix-based
systems where the usual line ending is LF.

• The header line is optional; a header parameter on the media type indicates whether the
header is present or not.

• Fields may be escaped by wrapping them in double quotes; any double quotes within the
field must be escaped with two double quotes ("").

B.2 Excel

Excel is a common tool for both creating and reading CSV documents, and therefore the CSV that it
produces is a de facto standard.

B.2.1 Saved CSV

Excel generates CSV files encoded using Windows-1252 with LF line endings. Characters that
cannot be represented within Windows-1252 are replaced by underscores. Only those cells that need
escaping (e.g. because they contain commas or double quotes) are escaped, and double quotes are
escaped with two double quotes.

Dates and numbers are formatted as displayed, which means that formatting can lead to information
being lost or becoming inconsistent.

B.2.2 Opened CSV

When opening CSV files, Excel interprets CSV files saved in UTF-8 as being encoded as
Windows-1252 (whether or not a BOM is present). It correctly deals with double quoted cells, except
that it converts line breaks within cells into spaces. It understands CRLF as a line break. It detects
dates (formatted as YYYY-MM-DD) and formats them in the default date formatting for files.

NOTE

The following describes the behavior of Microsoft Excel for Mac 2011 with an English locale.
Further testing is needed to see the behavior of Excel in other situations.

http://en.wikipedia.org/wiki/Byte_order_mark

B.2.3 Imported CSV

Excel provides more control when importing CSV files into Excel. However, it does not properly
understand UTF-8 (with or without BOM). It does however properly understand UTF-16 and can read
non-ASCII characters from a UTF-16-encoded file.

A particular quirk in the importing of CSV is that if a cell contains a line break, the final double quote
that escapes the cell will be included within it.

B.2.4 Copied Tabular Data

When tabular data is copied from Excel, it is copied in a tab-delimited format, with LF line breaks.

B.3 Google Spreadsheets

B.3.1 Downloading CSV

Downloaded CSV files are encoded in UTF-8, without a BOM, and with LF line endings. Dates and
numbers are formatted as they appear within the spreadsheet.

B.3.2 Importing CSV

CSV files can be imported as UTF-8 (with or without BOM). CRLF line endings are correctly
recognized. Dates are reformatted to the default date format on load.

B.4 CSV Files in a Tabular Data Package

Tabular Data Packages place the following restrictions on CSV files:

As a starting point, CSV files included in a Tabular Data Package package must conform
to the RFC for CSV (4180 - Common Format and MIME Type for Comma-Separated
Values (CSV) Files). In addition:

• File names MUST end with .csv.

• Files MUST be encoded as UTF-8.

• Files MUST have a single header row. This row MUST be the first row in the file.

◦ Terminology: each column in the CSV file is termed a field and its name
is the string in that column in the header row.

◦ The name MUST be unique amongst fields, MUST contain at least one
character, and MUST conform to the character restrictions defined for the
name property.

• Rows in the file MUST NOT contain more fields than are in the header row (though
they may contain less).

• Each file MUST have an entry in the tables array in the datapackage.json
file.

• The resource metadata MUST include a tableSchema attribute whose value
MUST be a valid schema description.

http://en.wikipedia.org/wiki/Byte_order_mark
http://dataprotocols.org/tabular-data-package/#csv-files
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#column-name
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#column-name
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-schema-description

• All fields in the CSV files MUST be described in the schema description.

CSV files generated by different applications often vary in their syntax, e.g. use of quoting
characters, delimiters, etc. To encourage conformance, CSV files in a CSV files in a
Tabular Data Package SHOULD:

• Use "," as field delimiters.
• Use CRLF (U+000D U+000A) or LF (U+000A) as line terminators.

If a CSV file does not follow these rules then its specific CSV dialect MUST be documented.
The resource hash for the resource in the datapackage.json descriptor MUST:

• Include a dialect key that conforms to that described in the CSV Dialect
Description Format.

Applications processing the CSV file SHOULD read use the dialect of the CSV file to
guide parsing.

C. Acknowledgements

This section is non-normative.

At the time of publication, the following individuals had participated in the Working Group, in the order
of their first name: Adam Retter, Alf Eaton, Anastasia Dimou, Andy Seaborne, Axel Polleres,
Christopher Gutteridge, Dan Brickley, Davide Ceolin, Eric Stephan, Erik Mannens, Gregg Kellogg,
Ivan Herman, Jeni Tennison, Jeremy Tandy, Jürgen Umbrich, Rufus Pollock, Stasinos
Konstantopoulos, William Ingram, and Yakov Shafranovich.

D. Changes from previous drafts

D.1 Changes since the candidate recommendation of 16 July 2015

• Use text/tab-separated-values instead of the un-registered text/tsv.
• /.well-known/csvm has been registered at IANA

D.2 Changes since the working draft of 16 April 2015

• Merging of metadata files has been removed as it was determined not to be necessary.
• Embedded metadata now used for compatibility check only, or as metadata if no other is

found.
• The titles annotation has been added to rows, and a section added describing the way in

which screen readers should announce rows and columns to users

NOTE

To replicate the findings above, test files which include non-ASCII characters, double quotes,
and line breaks within cells are:

• test-utf8.csv
• test-utf8-bom.csv
• test-utf16.csv
• test-utf16-bom.csv
• test.xslx
• test.xsl

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-schema-description
http://dataprotocols.org/csv-dialect/
http://dataprotocols.org/csv-dialect/
http://www.w3.org/TR/tabular-data-model/test-utf8.csv
http://www.w3.org/TR/tabular-data-model/test-utf8-bom.csv
http://www.w3.org/TR/tabular-data-model/test-utf16.csv
http://www.w3.org/TR/tabular-data-model/test-utf16-bom.csv
http://www.w3.org/TR/tabular-data-model/test.xlsx
http://www.w3.org/TR/tabular-data-model/test.xls

• A Datatype description may have an id annotation to reference an external datatype
definition in XSD, OWL, or some other format.

• Renamed the direction annotation to table direction.
• The built-in locations for locating metadata files were removed in favor of a site-wide

configuration file, which uses the original values for file-specific and directory-specific
metadata locations as the default value. See section 5.3 Default Locations and Site-wide
Location Configuration.

• The pattern for numeric types is now a number format pattern rather than a regular
expression.

D.3 Changes since the working draft of 08 January 2015

The document has undergone substantial changes since the last working draft. Below are some of
the changes made:

• Describe all core annotations on a group of tables, tables, columns, rows, and datatypes.
• Removed the Core Tabular Data Model, as this can be derived from the Annotated Tabular

Data Model with an appropriate dialect descriptiondialect description.
• Describe the process of locating metadata, using this to create embedded metadata,

processing tabular data files, and creating annotated tables.
• Move details on datatypes and parsing cells. Datatypes include detailed formats for different

datatypes.

E. References

E.1 Normative references

[BCP47]
A. Phillips; M. Davis. Tags for Identifying Languages. September 2009. IETF Best Current
Practice. URL: https://tools.ietf.org/html/bcp47

[BIDI]
Mark Davis; Aharon Lanin; Andrew Glass. Unicode Bidirectional Algorithm. 5 June 2014.
Unicode Standard Annex #9. URL: http://www.unicode.org/reports/tr9/

[ECMASCRIPT]
ECMAScript Language Specification. URL: https://tc39.github.io/ecma262/

[ISO8601]
Representation of dates and times. International Organization for Standardization. 2004. ISO
8601:2004. URL: http://www.iso.org/iso/catalogue_detail?csnumber=40874

[JSON-LD]
Manu Sporny; Gregg Kellogg; Markus Lanthaler. JSON-LD 1.0. 16 January 2014. W3C
Recommendation. URL: http://www.w3.org/TR/json-ld/

[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best
Current Practice. URL: https://tools.ietf.org/html/rfc2119

[RFC3968]
G. Camarillo. The Internet Assigned Number Authority (IANA) Header Field Parameter Registry
for the Session Initiation Protocol (SIP). December 2004. Best Current Practice. URL:
https://tools.ietf.org/html/rfc3968

[RFC4180]
Y. Shafranovich. Common Format and MIME Type for Comma-Separated Values (CSV) Files.
October 2005. Informational. URL: https://tools.ietf.org/html/rfc4180

[RFC5785]
M. Nottingham; E. Hammer-Lahav. Defining Well-Known Uniform Resource Identifiers (URIs).
April 2010. Proposed Standard. URL: https://tools.ietf.org/html/rfc5785

[UAX35]
Mark Davis; CLDR committee members. Unicode Locale Data Markup Language (LDML). 15
March 2013. Unicode Standard Annex #35. URL: http://www.unicode.org/reports/tr35/tr35-31/
tr35.html

http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/#dfn-dialect-description
https://tools.ietf.org/html/bcp47
https://tools.ietf.org/html/bcp47
http://www.unicode.org/reports/tr9/
http://www.unicode.org/reports/tr9/
https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
http://www.iso.org/iso/catalogue_detail?csnumber=40874
http://www.w3.org/TR/json-ld/
http://www.w3.org/TR/json-ld/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3968
https://tools.ietf.org/html/rfc3968
https://tools.ietf.org/html/rfc3968
https://tools.ietf.org/html/rfc4180
https://tools.ietf.org/html/rfc4180
https://tools.ietf.org/html/rfc5785
https://tools.ietf.org/html/rfc5785
http://www.unicode.org/reports/tr35/tr35-31/tr35.html
http://www.unicode.org/reports/tr35/tr35-31/tr35.html
http://www.unicode.org/reports/tr35/tr35-31/tr35.html

[UNICODE]
The Unicode Standard. URL: http://www.unicode.org/versions/latest/

[URI-TEMPLATE]
J. Gregorio; R. Fielding; M. Hadley; M. Nottingham; D. Orchard. URI Template. March 2012.
Proposed Standard. URL: https://tools.ietf.org/html/rfc6570

[tabular-metadata]
Jeni Tennison; Gregg Kellogg. Metadata Vocabulary for Tabular Data. W3C Proposed
Recommendation. URL: http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/

[xmlschema11-2]
David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson;
Paul V. Biron et al. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. 5 April
2012. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema11-2/

E.2 Informative references

[EBNF-NOTATION]
Tim Bray; Jean Paoli; C. Michael Sperberg-McQueen; Eve Maler; François Yergau. EBNF
Notation. W3C Recommendation. URL: http://www.w3.org/TR/xml/#sec-notation

[RFC7111]
M. Hausenblas; E. Wilde; J. Tennison. URI Fragment Identifiers for the text/csv Media Type.
January 2014. Informational. URL: https://tools.ietf.org/html/rfc7111

[UAX15]
Mark Davis; Ken Whistler. Unicode Normalization Forms. 31 August 2012. Unicode Standard
Annex #15. URL: http://www.unicode.org/reports/tr15

[annotation-model]
Robert Sanderson; Paolo Ciccarese; Benjamin Young. Web Annotation Data Model. 15 October
2015. W3C Working Draft. URL: http://www.w3.org/TR/annotation-model/

[csv2json]
Jeremy Tandy; Ivan Herman. Generating JSON from Tabular Data on the Web. W3C Proposed
Recommendation. URL: http://www.w3.org/TR/2015/PR-csv2json-20151117/

[csv2rdf]
Jeremy Tandy; Ivan Herman; Gregg Kellogg. Generating RDF from Tabular Data on the Web.
W3C Proposed Recommendation. URL: http://www.w3.org/TR/2015/PR-csv2rdf-20151117/

[encoding]
Anne van Kesteren; Joshua Bell; Addison Phillips. Encoding. 20 October 2015. W3C Candidate
Recommendation. URL: http://www.w3.org/TR/encoding/

[vocab-data-cube]
Richard Cyganiak; Dave Reynolds. The RDF Data Cube Vocabulary. 16 January 2014. W3C
Recommendation. URL: http://www.w3.org/TR/vocab-data-cube/

http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/latest/
https://tools.ietf.org/html/rfc6570
https://tools.ietf.org/html/rfc6570
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/
http://www.w3.org/TR/2015/PR-tabular-metadata-20151117/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/xml/#sec-notation
http://www.w3.org/TR/xml/#sec-notation
http://www.w3.org/TR/xml/#sec-notation
https://tools.ietf.org/html/rfc7111
https://tools.ietf.org/html/rfc7111
http://www.unicode.org/reports/tr15
http://www.unicode.org/reports/tr15
http://www.w3.org/TR/annotation-model/
http://www.w3.org/TR/annotation-model/
http://www.w3.org/TR/2015/PR-csv2json-20151117/
http://www.w3.org/TR/2015/PR-csv2json-20151117/
http://www.w3.org/TR/2015/PR-csv2rdf-20151117/
http://www.w3.org/TR/2015/PR-csv2rdf-20151117/
http://www.w3.org/TR/encoding/
http://www.w3.org/TR/encoding/
http://www.w3.org/TR/vocab-data-cube/
http://www.w3.org/TR/vocab-data-cube/

	Model for Tabular Data and Metadata on the Web
	W3C Proposed Recommendation 17 November 2015
	Abstract
	Status of This Document
	Table of Contents
	1. Introduction
	2. Conformance
	3. Typographical conventions
	4. Tabular Data Models
	4.1 Table groups
	4.2 Tables
	4.3 Columns
	4.4 Rows
	4.5 Cells
	4.6 Datatypes
	4.6.1 Length Constraints
	4.6.2 Value Constraints

	5. Locating Metadata
	5.1 Overriding Metadata
	5.2 Link Header
	5.3 Default Locations and Site-wide Location Configuration
	5.4 Embedded Metadata

	6. Processing Tables
	6.1 Creating Annotated Tables
	6.2 Metadata Compatibility
	6.3 URL Normalization
	6.4 Parsing Cells
	6.4.1 Parsing examples
	6.4.2 Formats for numeric types
	6.4.3 Formats for booleans
	6.4.4 Formats for dates and times
	6.4.5 Formats for durations
	6.4.6 Formats for other types

	6.5 Presenting Tables
	6.5.1 Bidirectional Tables
	6.5.2 Column and row labelling

	6.6 Validating Tables
	6.7 Converting Tables

	7. Best Practice CSV
	7.1 Content Type
	7.2 Encoding
	7.3 Line Endings
	7.4 Lines
	7.4.1 Headers

	7.5 Grammar

	8. Parsing Tabular Data
	8.1 Bidirectionality in CSV Files
	8.2 Examples
	8.2.1 Simple Example
	8.2.1.1 Using Overriding Metadata
	8.2.1.2 Using a Metadata File

	8.2.2 Empty and Quoted Cells
	8.2.3 Tabular Data Embedding Annotations
	8.2.3.1 Naive Parsing
	8.2.3.2 Parsing with Flags
	8.2.3.3 Recognizing Tabular Data Formats

	8.2.4 Parsing Multiple Header Lines

	A. IANA Considerations
	B. Existing Standards
	B.1 RFC 4180
	B.2 Excel
	B.2.1 Saved CSV
	B.2.2 Opened CSV
	B.2.3 Imported CSV
	B.2.4 Copied Tabular Data

	B.3 Google Spreadsheets
	B.3.1 Downloading CSV
	B.3.2 Importing CSV

	B.4 CSV Files in a Tabular Data Package

	C. Acknowledgements
	D. Changes from previous drafts
	D.1 Changes since the candidate recommendation of 16 July 2015
	D.2 Changes since the working draft of 16 April 2015
	D.3 Changes since the working draft of 08 January 2015

	E. References
	E.1 Normative references
	E.2 Informative references

