W3C home > Mailing lists > Public > public-css-commits@w3.org > February 2012

csswg/css3-transforms ChangeLog,1.17,1.18 Overview.html,1.27,1.28 Transforms.src.html,1.30,1.31

From: Simon Fraser via cvs-syncmail <cvsmail@w3.org>
Date: Wed, 22 Feb 2012 18:44:09 +0000
To: public-css-commits@w3.org
Message-Id: <E1S0HAf-0003gt-T0@lionel-hutz.w3.org>
Update of /sources/public/csswg/css3-transforms
In directory hutz:/tmp/cvs-serv14168

Modified Files:
	ChangeLog Overview.html Transforms.src.html 
Log Message:
2012-02-22 simon.fraser@apple.com
    Fix some validation issues.


Index: ChangeLog
===================================================================
RCS file: /sources/public/csswg/css3-transforms/ChangeLog,v
retrieving revision 1.17
retrieving revision 1.18
diff -u -d -r1.17 -r1.18
--- ChangeLog	22 Feb 2012 18:00:10 -0000	1.17
+++ ChangeLog	22 Feb 2012 18:44:07 -0000	1.18
@@ -1,7 +1,5 @@
 2012-02-22 simon.fraser@apple.com
-    Add Issues list section with a link to bugzilla.
-    Remove the DOM Interfaces section.
-    Add Aryeh Gregor as an editor.
+    Fix some validation issues.
 
 2012-02-21 simon.fraser@apple.com
     Add a link to #perspective-function

Index: Overview.html
===================================================================
RCS file: /sources/public/csswg/css3-transforms/Overview.html,v
retrieving revision 1.27
retrieving revision 1.28
diff -u -d -r1.27 -r1.28
--- Overview.html	22 Feb 2012 18:00:10 -0000	1.27
+++ Overview.html	22 Feb 2012 18:44:07 -0000	1.28
@@ -52,9 +52,11 @@
      href="http://www.w3.org/TR/css3-transforms">http://www.w3.org/TR/css3-transforms/</a>
      
 
-    <dt>Editor's Draft:
+    <dt>Editor's draft:
 
-    <dd><a href="http://dev.w3.org/csswg/css3-transforms/"></a>
+    <dd><a
+     href="http://dev.w3.org/csswg/css3-transforms/">http://dev.w3.org/csswg/css3-transforms/</a>
+     
 
     <dt>Previous version:
 
@@ -687,11 +689,10 @@
     participates in that context.
 
    <li> An element whose computed value for <a href="#transform-style"><code
-    class=property>transform-style</code></a> is <class
-    style=css>&lsquo;<code class=css>preserve-3d</code>&rsquo;, and which
-    itself participates in a <a class=term href="#d-rendering-context">3D
-    rendering context</a>, extends that 3D rendering context rather than
-    establishing a new one. </class>
+    class=property>transform-style</code></a> is <code
+    style=css>'preserve-3d'</code>, and which itself participates in a <a
+    class=term href="#d-rendering-context">3D rendering context</a>, extends
+    that 3D rendering context rather than establishing a new one.
 
    <li> An element participates in a <a class=term
     href="#d-rendering-context">3D rendering context</a> if its containing
@@ -1807,18 +1808,18 @@
   <p> Mathematically, all transformation functions can be represented as 4x4
    transformation matrices of the following form:
 
-  <p><img height=106 src=4x4matrix.png
-   title="\begin{bmatrix} m11 & m21 & m31 & m41 \\ m12 & m22 & m32 & m42 \\ m13 & m23 & m33 & m43 \\ m14 & m24 & m34 & m44 \end{bmatrix}"
-   width=222>
+  <p><img
+   alt="\begin{bmatrix} m11 & m21 & m31 & m41 \\ m12 & m22 & m32 & m42 \\ m13 & m23 & m33 & m43 \\ m14 & m24 & m34 & m44 \end{bmatrix}"
+   height=106 src=4x4matrix.png width=222>
 
   <ul>
    <li id=MatrixDefined>
     <p> A 2D 3x2 matrix with six parameters <em>a</em>, <em>b</em>,
      <em>c</em>, <em>d</em>, <em>e</em> and <em>f</em> is equivalent to to
      the matrix:</p>
-    <img height=106 src=matrix.png
-    title="\begin{bmatrix} a & c & 0 & e \\ b & d & 0 & f \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
-    width=108>
+    <img
+    alt="\begin{bmatrix} a & c & 0 & e \\ b & d & 0 & f \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
+    height=106 src=matrix.png width=108>
 
    <li id=TranslateDefined>
     <p> A 2D translation with the parameters <em>tx</em> and <em>ty</em> is
@@ -1837,9 +1838,9 @@
    <li id=SkewDefined>
     <p> A 2D skew transformation with the parameters <em>alpha</em> and
      <em>beta</em> is equivalent to the matrix:</p>
-    <img height=106 src=skew.png
-    title="\begin{bmatrix} 1 & \tan(\alpha) & 0 & 0 \\ \tan(\beta) & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
-    width=205>
+    <img
+    alt="\begin{bmatrix} 1 & \tan(\alpha) & 0 & 0 \\ \tan(\beta) & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
+    height=106 src=skew.png width=205>
 
    <li id=Translate3dDefined>
     <p> A 3D translation with the parameters <em>tx</em>, <em>ty</em> and
@@ -1851,16 +1852,16 @@
    <li id=Scale3dDefined>
     <p> A 3D scaling with the parameters <em>sx</em>, <em>sy</em> and
      <em>sz</em> is equivalent to the matrix:</p>
-    <img height=106 src=scale3d.png
-    title="\begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
-    width=137>
+    <img
+    alt="\begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
+    height=106 src=scale3d.png width=137>
 
    <li id=Rotate3dDefined>
     <p> A 3D rotation with the vector [x,y,z] and the parameter
      <em>alpha</em> is equivalent to the matrix:</p>
-    <img height=106 src=rotate3dmatrix.png
-    title="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
-    width=647>
+    <img
+    alt="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
+    height=106 src=rotate3dmatrix.png width=647>
     <p> where:</p>
     <img height=50 src=rotate3dvariables.png
     title="\newline sc = \sin (\alpha/2) \cdot \cos (\alpha/2) \newline sq = \sin^2 (\alpha/2)"
@@ -1869,30 +1870,30 @@
    <li id=RotateXDefined>
     <p> A 3D rotation about the X axis with the parameter <em>alpha</em> is
      equivalent to the matrix:</p>
-    <img height=106 src=rotateX.png
-    title="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
-    width=220>
+    <img
+    alt="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
+    height=106 src=rotateX.png width=220>
 
    <li id=RotateYDefined>
     <p> A 3D rotation about the Y axis with the parameter <em>alpha</em> is
      equivalent to the matrix:</p>
-    <img height=106 src=rotateY.png
-    title="\begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
-    width=220>
+    <img
+    alt="\begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
+    height=106 src=rotateY.png width=220>
 
    <li id=RotateZDefined>
     <p> A 3D rotation about the Z axis with the parameter <em>alpha</em> is
      equivalent to the matrix:</p>
-    <img height=106 src=rotateZ.png
-    title="\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
-    width=220>
+    <img
+    alt="\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
+    height=106 src=rotateZ.png width=220>
 
    <li id=PerspectiveDefined>
     <p> A perspective projection matrix with the parameter <em>d</em> is
      equivalent to the matrix:</p>
-    <img height=106 src=perspective.png
-    title="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 1 \end{bmatrix}"
-    width=143>
+    <img
+    alt="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 1 \end{bmatrix}"
+    height=106 src=perspective.png width=143>
   </ul>
 
   <h2 id=references><span class=secno>17. </span>References</h2>

Index: Transforms.src.html
===================================================================
RCS file: /sources/public/csswg/css3-transforms/Transforms.src.html,v
retrieving revision 1.30
retrieving revision 1.31
diff -u -d -r1.30 -r1.31
--- Transforms.src.html	22 Feb 2012 18:00:10 -0000	1.30
+++ Transforms.src.html	22 Feb 2012 18:44:07 -0000	1.31
@@ -41,6 +41,8 @@
           <dt>Latest version:
             <dd><a
               href="http://www.w3.org/TR/css3-transforms">[LATEST]</a>
+          <dt>Editor's draft:
+            <dd><a href="http://dev.w3.org/csswg/[SHORTNAME]/">http://dev.w3.org/csswg/[SHORTNAME]/</a>
           <dt>Previous version:
             <dd>None
           <dt id="editors-list">Editors:
@@ -457,7 +459,7 @@
                 </li>
                 <li>
                   An element whose computed value for <code class="property">transform-style</code> is
-                  <class style="css">'preserve-3d'</code>, and which itself participates in a
+                  <code style="css">'preserve-3d'</code>, and which itself participates in a
                   <span class="term">3D rendering context</span>, extends that 3D rendering context rather than establishing
                   a new one.
                 </li>
@@ -1675,14 +1677,14 @@
               <p>
                 Mathematically, all transformation functions can be represented as 4x4 transformation matrices of the following form:
               </p>
-              <img src="4x4matrix.png" title="\begin{bmatrix} m11 & m21 & m31 & m41 \\ m12 & m22 & m32 & m42 \\ m13 & m23 & m33 & m43 \\ m14 & m24 & m34 & m44 \end{bmatrix}" width="222" height="106">
+              <img src="4x4matrix.png" alt="\begin{bmatrix} m11 & m21 & m31 & m41 \\ m12 & m22 & m32 & m42 \\ m13 & m23 & m33 & m43 \\ m14 & m24 & m34 & m44 \end{bmatrix}" width="222" height="106">
 
               <ul>
                 <li id="MatrixDefined">
                   <p>
                     A 2D 3x2 matrix with six parameters <em>a</em>, <em>b</em>, <em>c</em>, <em>d</em>, <em>e</em> and <em>f</em> is equivalent to to the matrix:
                   </p>
-                  <img src="matrix.png" title="\begin{bmatrix} a & c & 0 & e \\ b & d & 0 & f \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="108" height="106">
+                  <img src="matrix.png" alt="\begin{bmatrix} a & c & 0 & e \\ b & d & 0 & f \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="108" height="106">
                 </li>
                 <li id="TranslateDefined">
                   <p>
@@ -1703,7 +1705,7 @@
                   <p>
                     A 2D skew transformation with the parameters <em>alpha</em> and <em>beta</em> is equivalent to the matrix:
                   </p>
-                  <img src="skew.png" title="\begin{bmatrix} 1 & \tan(\alpha) & 0 & 0 \\ \tan(\beta) & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="205" height="106">
+                  <img src="skew.png" alt="\begin{bmatrix} 1 & \tan(\alpha) & 0 & 0 \\ \tan(\beta) & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="205" height="106">
                 </li>
                 <li id="Translate3dDefined">
                   <p>
@@ -1715,13 +1717,13 @@
                   <p>
                     A 3D scaling with the parameters <em>sx</em>, <em>sy</em> and <em>sz</em> is equivalent to the matrix:
                   </p>
-                  <img src="scale3d.png" title="\begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="137" height="106">
+                  <img src="scale3d.png" alt="\begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="137" height="106">
                 </li>
                 <li id="Rotate3dDefined">
                   <p>
                     A 3D rotation with the vector [x,y,z] and the parameter <em>alpha</em> is equivalent to the matrix:
                   </p>
-                  <img src="rotate3dmatrix.png" title="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="647" height="106">
+                  <img src="rotate3dmatrix.png" alt="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="647" height="106">
                   <p>
                     where:
                   </p>
@@ -1731,25 +1733,25 @@
                   <p>
                     A 3D rotation about the X axis with the parameter <em>alpha</em> is equivalent to the matrix:
                   </p>
-                  <img src="rotateX.png" title="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="220" height="106">
+                  <img src="rotateX.png" alt="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="220" height="106">
                 </li>
                 <li id="RotateYDefined">
                   <p>
                     A 3D rotation about the Y axis with the parameter <em>alpha</em> is equivalent to the matrix:
                   </p>
-                  <img src="rotateY.png" title="\begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="220" height="106">
+                  <img src="rotateY.png" alt="\begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="220" height="106">
                 </li>
                 <li id="RotateZDefined">
                   <p>
                     A 3D rotation about the Z axis with the parameter <em>alpha</em> is equivalent to the matrix:
                   </p>
-                  <img src="rotateZ.png" title="\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="220" height="106">
+                  <img src="rotateZ.png" alt="\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="220" height="106">
                 </li>
                 <li id="PerspectiveDefined">
                   <p>
                     A perspective projection matrix with the parameter <em>d</em> is equivalent to the matrix:
                   </p>
-                  <img src="perspective.png" title="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 1 \end{bmatrix}" width="143" height="106">
+                  <img src="perspective.png" alt="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 1 \end{bmatrix}" width="143" height="106">
                 </li>
               </ul>
 
Received on Wednesday, 22 February 2012 18:44:12 UTC

This archive was generated by hypermail 2.3.1 : Tuesday, 6 January 2015 20:44:50 UTC