W3C home > Mailing lists > Public > public-css-commits@w3.org > February 2012

csswg/css3-transforms ChangeLog,1.14,1.15 Overview.html,1.24,1.25 Transforms.src.html,1.27,1.28 rotate3dmatrix.png,1.1,1.2 rotate3dvariables.png,1.1,1.2

From: Dirk Schulze via cvs-syncmail <cvsmail@w3.org>
Date: Tue, 14 Feb 2012 06:13:16 +0000
To: public-css-commits@w3.org
Message-Id: <E1RxBdc-0006wT-ED@lionel-hutz.w3.org>
Update of /sources/public/csswg/css3-transforms
In directory hutz:/tmp/cvs-serv26669

Modified Files:
	ChangeLog Overview.html Transforms.src.html rotate3dmatrix.png 
	rotate3dvariables.png 
Log Message:
2012-02-13 dschulze@adobe.com
    Corrected mistake in the rotate3d matrix.
    Changed wording in introduction to match SVG and HTML.
    Use capital letters on main headlines for nouns.
    Fixed typos.

Index: rotate3dvariables.png
===================================================================
RCS file: /sources/public/csswg/css3-transforms/rotate3dvariables.png,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -d -r1.1 -r1.2
Binary files /tmp/cvsNIzE4Q and /tmp/cvsY2Phl5 differ

Index: ChangeLog
===================================================================
RCS file: /sources/public/csswg/css3-transforms/ChangeLog,v
retrieving revision 1.14
retrieving revision 1.15
diff -u -d -r1.14 -r1.15
--- ChangeLog	13 Feb 2012 05:55:39 -0000	1.14
+++ ChangeLog	14 Feb 2012 06:13:13 -0000	1.15
@@ -1,3 +1,9 @@
+2012-02-13 dschulze@adobe.com
+    Corrected mistake in the rotate3d matrix.
+    Changed wording in introduction to match SVG and HTML.
+    Use capital letters on main headlines for nouns.
+    Fixed typos.
+
 2012-02-12 dschulze@adobe.com
     Merged CSSMatrix from current spec with CSS 3D Transforms.
     Added function 'isAffineTransform' that returns 'true' if the matrix doesn't have any 3D components.

Index: Overview.html
===================================================================
RCS file: /sources/public/csswg/css3-transforms/Overview.html,v
retrieving revision 1.24
retrieving revision 1.25
diff -u -d -r1.24 -r1.25
--- Overview.html	13 Feb 2012 05:55:39 -0000	1.24
+++ Overview.html	14 Feb 2012 06:13:13 -0000	1.25
@@ -36,15 +36,15 @@
 
    <h1>CSS Transforms</h1>
 
-   <h2 class="no-num no-toc" id=longstatus-date>Editor's Draft 13 February
+   <h2 class="no-num no-toc" id=longstatus-date>Editor's Draft 14 February
     2012</h2>
 
    <dl>
     <dt>This version:
 
     <dd> <a
-     href="http://www.w3.org/TR/2012/ED-css3-transforms-20120213/">http://dev.w3.org/csswg/css3-transforms/</a>
-     <!--http://www.w3.org/TR/2012/WD-css3-transforms-20120213-->
+     href="http://www.w3.org/TR/2012/ED-css3-transforms-20120214/">http://dev.w3.org/csswg/css3-transforms/</a>
+     <!--http://www.w3.org/TR/2012/WD-css3-transforms-20120214-->
 
     <dt>Latest version:
 
@@ -213,10 +213,10 @@
     Values and Lists </a>
 
    <li><a href="#animation"><span class=secno>14. </span> Transitions and
-    animations between transform values </a>
+    Animations between Transform Values </a>
 
    <li><a href="#matrix-decomposition"><span class=secno>15. </span> Matrix
-    decomposition for animation </a>
+    Decomposition for Animation </a>
     <ul class=toc>
      <li><a href="#unmatrix"><span class=secno>15.1. </span>Unmatrix</a>
 
@@ -228,7 +228,7 @@
     </ul>
 
    <li><a href="#mathematical-description"><span class=secno>16. </span>
-    Mathematical description of transformation functions </a>
+    Mathematical Description of Transformation Functions </a>
 
    <li><a href="#dom-interfaces"><span class=secno>17. </span> DOM Interfaces
     </a>
@@ -259,10 +259,10 @@
   <p><em>This section is not normative.</em>
 
   <p> The CSS <a href="http://www.w3.org/TR/REC-CSS2/visuren.html">visual
-   formatting model</a> describes a coordinate system within which each
-   element is positioned. Positions and sizes in this coordinate space can be
-   thought of as being expressed in pixels, starting in the upper left corner
-   of the parent with positive values proceeding to the right and down.
+   formatting model</a> describes a coordinate system within each element is
+   positioned. Positions and sizes in this coordinate space can be thought of
+   as being expressed in pixels, starting in the origin of point with
+   positive values proceeding to the right and down.
 
   <p> This coordinate space can be modified with the <a href="#effects"><code
    class=property>'transform'</code></a> property. Using transform, elements
@@ -822,9 +822,9 @@
    class=property>'transform'</code></a> property. This property contains a
    list of <a href="#transform-functions">transform functions</a>. The final
    transformation value for a coordinate system is obtained by converting
-   each function in the list to its corresponding matrix (either defined in
-   this specification or by reference to the SVG specification), then
-   multiplying the matrices.
+   each function in the list to its corresponding matrix like defined in <a
+   href="#mathematical-description">Mathematical Description of
+   Transformation Functions</a>, then multiplying the matrices.
 
   <table class=propdef>
    <tbody>
@@ -1527,8 +1527,8 @@
    is the matrix multiplication of the list of transforms.</p>
   <!-- ======================================================================================================= -->
 
-  <h2 id=animation><span class=secno>14. </span> Transitions and animations
-   between transform values</h2>
+  <h2 id=animation><span class=secno>14. </span> Transitions and Animations
+   between Transform Values</h2>
 
   <p> When animating or transitioning the value of a transform property the
    rules described below are applied. The &lsquo;<code
@@ -1616,7 +1616,7 @@
    transformed element is not rendered.
 
   <h2 id=matrix-decomposition><span class=secno>15. </span> Matrix
-   decomposition for animation</h2>
+   Decomposition for Animation</h2>
 
   <p> When interpolating between 2 matrices, each is decomposed into the
    corresponding translation, rotation, scale, skew and perspective values.
@@ -1793,7 +1793,7 @@
           scale3d(scale[0], scale[1], scale[2])</pre>
 
   <h2 id=mathematical-description><span class=secno>16. </span> Mathematical
-   description of transformation functions</h2>
+   Description of Transformation Functions</h2>
 
   <p> Mathematically, all transformation functions can be represented as 4x4
    transformation matrices of the following form:
@@ -1850,12 +1850,12 @@
     <p> A 3D rotation with the vector [x,y,z] and the parameter
      <em>alpha</em> is equivalent to the matrix:</p>
     <img height=106 src=rotate3dmatrix.png
-    title="\begin{bmatrix} 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (z^2 + x^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
+    title="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
     width=647>
     <p> where:</p>
     <img height=50 src=rotate3dvariables.png
-    title="\newline sc = \sin (\alpha) \cdot \cos (\alpha) \newline sq = \sin^2 (\alpha)"
-    width=177>
+    title="\newline sc = \sin (\alpha/2) \cdot \cos (\alpha/2) \newline sq = \sin^2 (\alpha/2)"
+    width=221>
 
    <li id=RotateXDefined>
     <p> A 3D rotation about the X axis with the parameter <em>alpha</em> is

Index: rotate3dmatrix.png
===================================================================
RCS file: /sources/public/csswg/css3-transforms/rotate3dmatrix.png,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -d -r1.1 -r1.2
Binary files /tmp/cvs1gxtCU and /tmp/cvsoGObW8 differ

Index: Transforms.src.html
===================================================================
RCS file: /sources/public/csswg/css3-transforms/Transforms.src.html,v
retrieving revision 1.27
retrieving revision 1.28
diff -u -d -r1.27 -r1.28
--- Transforms.src.html	13 Feb 2012 05:55:39 -0000	1.27
+++ Transforms.src.html	14 Feb 2012 06:13:14 -0000	1.28
@@ -90,11 +90,10 @@
           <p><em>This section is not normative.</em></p>
           <p>
             The CSS <a href="http://www.w3.org/TR/REC-CSS2/visuren.html">visual
-            formatting model</a> describes a coordinate system within which each
+            formatting model</a> describes a coordinate system within each
             element is positioned. Positions and sizes in this coordinate space can
-            be thought of as being expressed in pixels, starting in the upper left
-            corner of the parent with positive values proceeding to the right and
-            down.
+            be thought of as being expressed in pixels, starting in the origin of point
+            with positive values proceeding to the right and down.
           </p>
           <p>
             This coordinate space can be modified with the <code
@@ -577,9 +576,8 @@
                 renders in through the <code class="property">'transform'</code> property. This property contains a
                 list of <a href="#transform-functions">transform functions</a>. The
                 final transformation value for a coordinate system is obtained by converting
-                each function in the list to its corresponding matrix (either defined in
-                this specification or by reference to the SVG specification), then multiplying
-                the matrices.
+                each function in the list to its corresponding matrix like defined in <a href="#mathematical-description">Mathematical
+                Description of Transformation Functions</a>, then multiplying the matrices.
               </p>
               <table class="propdef">
                 <tbody>
@@ -1384,7 +1382,7 @@
           <!-- ======================================================================================================= -->
 
               <h2 id="animation">
-                Transitions and animations between transform values
+                Transitions and Animations between Transform Values
               </h2>
 
               <p>
@@ -1493,7 +1491,7 @@
               </p>
 
               <h2 id="matrix-decomposition">
-                Matrix decomposition for animation
+                Matrix Decomposition for Animation
               </h2>
 
               <p>
@@ -1666,7 +1664,7 @@
           scale3d(scale[0], scale[1], scale[2])</pre>
           
               <h2 id="mathematical-description">
-                Mathematical description of transformation functions
+                Mathematical Description of Transformation Functions
               </h2>
               <p>
                 Mathematically, all transformation functions can be represented as 4x4 transformation matrices of the following form:
@@ -1717,11 +1715,11 @@
                   <p>
                     A 3D rotation with the vector [x,y,z] and the parameter <em>alpha</em> is equivalent to the matrix:
                   </p>
-                  <img src="rotate3dmatrix.png" title="\begin{bmatrix} 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (z^2 + x^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="647" height="106">
+                  <img src="rotate3dmatrix.png" title="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="647" height="106">
                   <p>
                     where:
                   </p>
-                  <img src="rotate3dvariables.png" title="\newline sc = \sin (\alpha) \cdot \cos (\alpha) \newline sq = \sin^2 (\alpha)" width="177" height="50">
+                  <img src="rotate3dvariables.png" title="\newline sc = \sin (\alpha/2) \cdot \cos (\alpha/2) \newline sq = \sin^2 (\alpha/2)" width="221" height="50">
                 </li>
                 <li id="RotateXDefined">
                   <p>
Received on Tuesday, 14 February 2012 06:13:18 UTC

This archive was generated by hypermail 2.3.1 : Tuesday, 6 January 2015 20:44:50 UTC