
22-Apr-13
Dashboard image reproduced with the permission of Visteon and 3M Corporation

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2012

W3C Automotive BG: F2F in Barcelona

GENIVI Vehicle Web API

Justin(JongSeon) Park

LG Electronics

Who am I?

1

Justin (JongSeon) Park

• Chief Research Engineer, SW Platform Lab. of LG Electronics

• 10 years experience in embedded system

• Working in automotive industry for 6 years

 - Developed IVI and Telematics system

• Participating in GENIVI Alliance regarding Web Vehicle APIs

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

Agenda

2

 Introduction of Web in Automotive

Use Cases, Characteristics of Vehicle Data

Considerations

 Suggested Architecture

 Principles to define Vehicle APIs

 Introduction of GENIVI Web Vehicle APIs

 API descriptions

 Reference Implementation

Conclusion

Q&A

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

Web Technologies for Automotive

3

 Web Browsing in a vehicle

 IVI Web Browser : Big Button, Driving Regulation, etc.

 GUI framework for HMI

 Portability, MVC Pattern, Abundant Dev. Pool.

 Platform for App Store

 Easily adding new features even if not for App Store

 Alternative Mirror Link

 Exchange data via meta data instead of transferring the whole screen

Requires
Standardized
Vehicle APIs

The first target will be obviously IVI system

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

Use Cases for Web API for Vehicle Data

4

 Home (Main, HMI, Dashboard) - Installed(Build-in), OEM-provided

 Major module that access various Vehicle Data

 Needs almost all vehicle data for both reading/writing

Categorized into three types of WebApps which access vehicle data

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

Home UI
(Thin WebApp)

HMI/App Framework
(UI Effect, Business Logic)

Middleware

Required Well-defined APIs with documentation

Use Cases for Web API for Vehicle Data

5

 Telematics App for mobile phone - Downloadable, OEM-provided

 Market App – Downloadable

 Most Apps need to know whether vehicle is moving (regulations)

 Insurance App (Pay-as-you-drive), Any creative Apps in future

 It’s not certain that OEMs will allow Market Apps to access vehicle data

 Are we needed/able to suggest/predict all possible Apps per each data types?

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

Mobile App
(Remote Control, Diagnosis)

Mobile App Framework
(Authentication,

Communication)

Middleware

Required Well-defined APIs with documentation

Telematics

Component

How to Make Standard Vehicle Web APIs?

6

 Data Characteristic

 So many kinds of vehicle data and data types

 A few Persistent Data - Car Type, VIN*, Model, WMI**, etc.

 Most data are Transient; status at a moment

 Only the latest value is meaningful (except GPS data)

 Vehicle Network Characteristic (usually CAN)

 Real data exist somewhere else not in IVI

 Data is broadcasted rather than query

 OEM Variations

 Unit, Accuracy, Frequency, etc.

 Policy - Which data are supported, Permissions

We have to understand and consider characteristics of vehicle data

VIN* - Vehicle Identification Number (ISO 3779)
WMI** - World Manufacturer Identifier GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

How to Select Data Types to Support?

7

 From Use cases

 Market Apps : only a few types is enough

 OEM-provided Apps : almost all data is candidates

 Two Approaches

 Select only common data types through broad consensus

– Hard to define the scope of common due to the variety of OEM

– Risk to cover very small percentage of data types needed

– Still might fail to prevent fragmentation  Only for compatibility of Market Apps?

 Select all possible data types

– Required much work

– But it’s easier to subtract than to add

– Still have an issue that only a part of data types are support depending on models

Considerations on set the scope of Standardization

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

How to Overcome OEM Variations?

8

 Define as many data types as possible to prevent fragment

 Need to gather OEM requirements as much as possible

 Allow OEMs much freedom to maintain their policy

 A few mandatory data types

 Most of data types need to be optional

 Consider flexibility of interface

 Minimum number of common methods to support various data types

 Less structured interfaces to absorb changes depending on OEMs

APIs must be very flexible to absorb variety

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

Overall IVI Architecture for Vehicle Data API

9

Layered architecture according to characteristics of vehicle network

Vehicle Network Manager

Vehicle Network Stack

Vehicle Network Driver

Native

Apps

IPC

Web Runtime

Web App

Vehicle Plug-in

Vehicle API

 Commercial solution is usually used

 Full tool chain – simulation, monitoring, automatic code-

generation to apply the change of message database

IVI Layered Architecture

 Gateway to vehicle network for Apps

 Broadcast updates of values

 Keep the latest values

 Message encoding/decoding

 IPC should cover both web and native apps

 Various ways to implement it

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

Web Vehicle API Project in GENIVI

10

 Collected opinions to define the types of supported data

 GENIVI has over 168 member companies including 11 OEMs

 To reflect the realistic requirements, OEM survey was conducted

 Total 9 groups and 129 data types are defined

 Vehicle Information (7)

 Running Status (26)

 Maintenance (8)

 Personalization (20)

 Driving Safety (16)

 9 groups are defined as 9 Interfaces

 2 methods(get/set) are defined to access all data as the unified way

 getSupportedTypes() method is defined

 Vision System (11)

 Parking (4)

 Climate/Environment (29)

 Electric Vehicle (8)

GENIVI has full Web Vehicle API and implementation

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

API Description – Common Interface

11

 All interfaces for data exchange are defined to inherit VehicleEvent interface.

 All vehicle data belong to a type of VehicleEvent and can be accessed as an

attribute of that.

 get/set/getSupportedEventTypes can be accessible via VehicleInterface

[NoInterfaceObject]

interface VehicleEvent : Event {};

interface RunningStatusEvent : VehicleEvent {

 ...

 readonly attribute unsigned short speedometer;

 readonly attribute unsigned short? engineSpeed;

 ...

};

[NoInterfaceObject]

interface VehicleInterface : EventTarget {

 void get(VehicleEventType type, VehicleDataHandler handler, ErrorCallback errorCB);

 void set(VehicleEventType type, VehicleEvent data, SuccessCallback successCB, ErrorCallback errorCB);

 VehicleEventType[] getSupportedEventTypes(VehicleEventType type, boolean writable);

};

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

API Description – Multiple Data Access (1/3)

12

 Well-structured Interface

 Some data have relations to others; these produce a type of data structure

 Especially, a Setting method requires a set of attributes at a time

 Usually, these are defined as a structured data types - Interfaces

 Good for Clarity. But flexibility is inhibited

Interface A_1 : Event {

 attribute A_1_a;

 attribute A_1_b;

 attribute A_1_c;

}

Interface A : Event {

 attribute A_1;

 attribute A_2;

}

A_1 A_2

A_1_b A_1_a A_1_c

A

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

API Description – Multiple Data Access (2/3)

13

 Less structured interface for flexibility

 Real data: A_1_a, A_1_b, A_1_c, A_2

 Virtual type: A, A_1

 Special attribute "Type" is used as an ID to identify the intended type and the range of validity

of data.

Interface A : Event {

 attribute Type;

 attribute A_1_a;

 attribute A_1_b;

 attribute A_1_c;

 attribute A_2;

}

const Type A = "A";

const Type A_1 = "A_1";

const Type A_1_a = "A_1_a";

const Type A_1_b = "A_1_b";

const Type A_1_c = "A_1_c";

const Type A_2 = "A_2";

A_1 A_2

A_1_b A_1_a A_1_c

A

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

API Description – Multiple Data Access (3/3)

14

 Handling multiple data at a time (cont’d)

 Example code

function handleInterfaceA(objA) {

 if (objA.type == "A_1") {

 console.log("value A_1_a = "+objA.A_1_a); // It's valid.

 console.log("value A_1_b = "+objA.A_1_b); // It's valid.

 console.log("value A_1_c = "+objA.A_1_c); // It's valid.

 console.log("value A_2 = "+objA.A_2); // It's possible but the value is invalid in our rules.

 }

 else if (objA.type == "A_2") {

 console.log("value A_2 = "+objA.A_2); // It's valid.

 }

}

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

API Description – Example (1/6)

 Tire pressure status in MaintenanceEvent interface

interface MaintenanceEvent : VehicleEvent {

 const VehicleEventType MAINTENANCE = "maintenance";

…….

 const VehicleEventType MAINTENANCE_TIREPRESSURESTATUS = "maintenance_tirepressurestatus";

 const VehicleEventType MAINTENANCE_TIREPRESSURESTATUS_FRONTLEFT = "maintenance_tirepressurestatus_frontleft";

 const VehicleEventType MAINTENANCE_TIREPRESSURESTATUS_FRONTRIGHT = "maintenance_tirepressurestatus_frontright";

 const VehicleEventType MAINTENANCE_TIREPRESSURESTATUS_REARLEFT = "maintenance_tirepressurestatus_rearleft";

 const VehicleEventType MAINTENANCE_TIREPRESSURESTATUS_REARRIGHT = "maintenance_tirepressurestatus_rearright";

…….

 const unsigned short TIREPRESSURESTATUS_NORMAL = 0;

 const unsigned short TIREPRESSURESTATUS_LOW = 1;

 const unsigned short TIREPRESSURESTATUS_HIGH = 2;

…….

 readonly attribute unsigned short? tirePressureStatusFrontLeft;

 readonly attribute unsigned short? tirePressureStatusFrontRight;

 readonly attribute unsigned short? tirePressureStatusRearLeft;

 readonly attribute unsigned short? tirePressureStatusRearRight;

…….

};

15

Maintenance

odometer transmissionOilLife tirePressureStatus …

tirePressureStatusFrontLeft tirePressureStatusFrontRight tirePressureStatusRearLeft tirePressureStatusRearRight

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

Capitalization Styles
Pascal case,
Attribute-> Camel Case

API Description – Example (2/6)

16

 Getting a single vehicle data

 Let’s get the tire pressure status for the front left tire and notice the status to the driver

 Call the get function with a callback function (handleVehicleData)

vehicle.get(‘maintenance_tirepressurestatus_frontleft’, handleVehicleData, handleError);

function handleVehicleData(data) {

 if (data.tirePressureStatusFrontLeft == 0) {

 alert(‘Tire pressure status (front-left) is normal.’);

 } else if (data.tirePressureStatusFrontLeft == 1) {

 alert(‘Tire pressure status (front-left) is low.’);

 } else if (data.tirePressureStatusFrontLeft == 2) {

 alert(‘Tire pressure status (front-left) is high.’);

 }

}

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

API Description – Example (3/6)

17

 Getting multiple vehicle data

 Let’s get tire pressure status for all tires simultaneously

 In the previous way, you have to get the status of each tire.

 However, with the upper level type, the code becomes quite simple.

vehicle.get(‘maintenance_tirepressurestatus_frontleft’, handleVehicleData, handleError);

vehicle.get(‘maintenance_tirepressurestatus_frontright’, handleVehicleData, handleError);

vehicle.get(‘maintenance_tirepressurestatus_rearleft’, handleVehicleData, handleError);

vehicle.get(‘maintenance_tirepressurestatus_rearright’, handleVehicleData, handleError);

function handleVehicleData(data) {

 if ((data.tirePressureStatusFrontLeft != 0) || (data.tirePressureStatusFrontRight != 0) ||

 (data.tirePressureStatusRearLeft != 0) || (data.tirePressureStatusRearRight != 0)) {

 alert(‘Check tire pressure.’);

 }

}

vehicle.get(‘maintenance_tirepressurestatus’, handleVehicleData, handleError);

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

API Description – Example (4/6)

18

 Adding event listener(s)

 Let’s add an event listener to monitor the tire pressure status for the front left tire.

 Also, you can use the upper level type to add multiple listeners.

 A callback function (handleVehicleData) is called whenever any of tire pressure status is

changed.

vehicle.addEventListener(‘maintenance_tirepressurestatus_frontleft’, handleVehicleData, false);

vehicle.addEventListener(‘maintenance_tirepressurestatus’, handleVehicleData, false);

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

API Description – Example (5/6)

19

 Setting a single vehicle data

 Assume that driver seat position can be set in this vehicle.

 Let’s set the driver seat position for recline seatback.

interface PersonalizationEvent : VehicleEvent {

…….

 const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION = "personalization_driverseatposition";

 const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION_RECLINE_SEATBACK =

 "personalization_driverseatposition_reclineseatback";

 const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION_SLIDE = "personalization_driverseatposition_slide";

 const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION_CUSHION_HEIGHT = "personalization_driverseatposition_cushionheight";

 const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION_HEADREST = "personalization_driverseatposition_headrest";

 const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION_BACKCUSHION = "personalization_driverseatposition_backcushion";

 const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION_SIDECUSHION = "personalization_driverseatposition_sidecushion";

…….

 readonly attribute unsigned short? driverSeatPositionReclineSeatback;

 readonly attribute unsigned short? driverSeatPositionSlide;

 readonly attribute unsigned short? driverSeatPositionCushionHeight;

 readonly attribute unsigned short? driverSeatPositionHeadrest;

 readonly attribute unsigned short? driverSeatPositionBackCushion;

 readonly attribute unsigned short? driverSeatPositionSideCushion;

…….

};

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

API Description – Example (6/6)

20

 Setting a single vehicle data

 Create an object (obj) and add an attribute in the obj.

 Setting multiple vehicle data

 Let’s set all driver seat position.

 Just add attributes to the obj and use the upper level type.

var obj = new Object();

obj.driverSeatPositionReclineSeatback = 0;

vehicle.set(‘personalization_driverseatposition_reclineseatback’, obj, handleSuccess, handleError);

var obj = new Object();

obj.driverSeatPositionReclineSeatback = 0;

obj.driverSeatPositionSlide = 0;

obj.driverSeatPositionCushionHeight = 0;

obj.driverSeatPositionHeadrest = 0;

obj.driverSeatPositionBackCushion = 0;

obj.driverSeatPositionSideCushion = 0;

vehicle.set(‘personalization_driverseatposition’, obj, handleSuccess, handleError);

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

Pros and Cons

21

 Pros

 Various data types are supported in accordance with GENIVI members

 Seamless way of access for all data types via minimum APIs and interfaces

 Flexibility for various supported types

 Various granularity is possible

 Easily modifiable to fit OEM’s own purpose

 Cons

 New way for multiple access might be unfamiliar

– Especially, when an event handler is registered to listen a group ID, leaf node events are

fired to it.

 Data is exchanged as a unified structure - tens of bytes overhead

 GENIVI Web Vehicle API is still in progress

 Hope to make it better to reflect many other opinions

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

Vehicle Network Manager

Web Runtime

Web App

Vehicle Plug-in

GENIVI Reference Implementation (1/4)

22 GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2012

 License is MPL (Mozilla Public License) v2.0

 Source code is available in the GENIVI git

 Migration to OSS is in progress

 Directory Structure

Vehicle Network Stack

Vehicle Network Driver

Native

Apps

IPC

(D-Bus)

Sample HTML Page

Vehicle Plug-in

Vehicle API

Vehicle Network Adapter
Ethernet

Vehicle Data

Simulator

(on behalf of

Vehicle Bus)

Composition of GENIVI Reference Implementation

GENIVI Reference Implementation (2/4)

23

 Download

 Currently only available to GENIVI members

$ git clone https://git.genivi.org/srv/git/web-api-vehicle

 Build and Install

 Script files are provided

$./script/build-all.sh

 Run

 Need to execute 3 Apps separately

$./bin/VehicleNetworkAdapter &

$./bin/VehicleDataSimulator

$ google-chrome ./html/index.html (Need to open html on browser)

How to use it?

VIN* - Vehicle Identification Number (ISO 3779)
WMI** - World Manufacturer Identifier GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

GENIVI Reference Implementation (3/4)

24 GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2012

Vehicle

Network

Adapter

(daemon)

Sample HTML Page Vehicle Plug-in Vehicle Data Simulator
Ethernet D-Bus

Screenshot from run-time

 Made as simple as possible rather than looking nice

 To help understanding easily from the source code

 To let developers test a certain feature

25

Simple Demonstration

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

GENIVI Reference Implementation (4/4)

Conclusion

26

 Flexibility

 Vehicle API depends on rigid factors such as vehicle network protocol and OEM’s

policy

 Generality

 Should be fit for many OEM’s requirements

 Limited coverage will cause additional work and fragmentation, which make it less

meaningful

 Timing

 Web Vehicle API needs to be standardized very soon

 Many OEMs are now working on it in their own way

 As time goes on, it will be harder to convince OEMs to adopt it

How to standardize Web Vehicle API successfully?

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

Thank you for your attention

27

Any Questions?

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries

Copyright © GENIVI Alliance 2011

