GENIVI

W3C Automotive BG: F2F in Barcelona
GENIVI Vehicle Web API

— <

il

Justin(.JOngSeon) Park
LG Electronics

Dashboard image reproduced with the permission of Visteon and 3M Corporation
22-Apr-13 GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 2012

Justin (JongSeon) Park

Chief Research Engineer, SW Platform Lab. of LG Electronics
10 years experience in embedded system

Working in automotive industry for 6 years
- Developed VI and Telematics system

Participating in GENIVI Alliance regarding Web Venhicle APIs

U Introduction of Web in Automotive
1 Use Cases, Characteristics of Vehicle Data
1 Considerations

» Suggested Architecture
* Principles to define Vehicle APIs

O Introduction of GENIVI Web Vehicle APIs
= API descriptions

» Reference Implementation
1 Conclusion
d Q&A

GENIVI

The first target will be obviously 1VI system

O Web Browsing in a vehicle
* |VI Web Browser : Big Button, Driving Regulation, etc.

D GUI framework for HMI .. Requires
= Portability, MVC Pattern, Abundant Dev. Pool. > Standardized
| Vehicle APIs

= Easily adding new features even if not for App Store

d Alternative Mirror Link
» Exchange data via meta data instead of transferring the whole screen

GENIVI —

Categorized into three types of WebApps which access vehicle data

d Home (Main, HMI, Dashboard) - Installed(Build-in), OEM-provided
= Major module that access various Vehicle Data
» Needs almost all vehicle data for both reading/writing

Home Ul
(Thin WebApp)

A
Required|Well-defined APIs with documentation

HMI/App Framework
(Ul Effect, Business Logic)

A

& A 4

Panels Set;ings vy S
Top »‘«m‘vlr(ations — /‘ o .
Ao eS8 Middleware

GENIVI

1 Telematics App for mobile phone - Downloadable, OEM-provided

A\)
Jed }‘; .v\
{ Telematics J{ e -

\ Mobile App
Component « “. (Remote Control, Diagnosis)
\\\‘ \‘\ Required|Well-defined APIs with documentation
Middleware “~.s[Mobile App Framework
______________ (Authentication,
""""" Communication)
1 Market App — Downloadable

= Most Apps need to know whether vehicle is moving (regulations)
» |nsurance App (Pay-as-you-drive), Any creative Apps in future

» |t's not certain that OEMSs will allow Market Apps to access vehicle data
= Are we needed/able to suggest/predict all possible Apps per each data types?

How to Make Standard.VghichmPls?\t
GENIVI ——— SN

We have to understand and consider characteristics of vehicle data

1 Data Characteristic
= So many kinds of vehicle data and data types
= A few Persistent Data - Car Type, VIN®, Model, WMI™, etc.
= Most data are Transient; status at a moment
= Only the latest value is meaningful (except GPS data)

1 Vehicle Network Characteristic (usually CAN)
» Real data exist somewhere else not in VI
= Data is broadcasted rather than query

1 OEM Variations
= Unit, Accuracy, Frequency, etc.
= Policy - Which data are supported, Permissions

VIN* — Vehicle Identification Number (ISO 3779)
WMI** — World Manufacturer |dentifier 6

\\i .

How to-Select Data Types _te/Sﬁo'rt?
GENIVI S

Considerations on set the scope of Standardization

O From Use cases
= Market Apps : only a few types is enough
= OEM-provided Apps : almost all data is candidates

O Two Approaches

= Select only common data types through broad consensus
— Hard to define the scope of common due to the variety of OEM
— Risk to cover very small percentage of data types needed
— Still might fail to prevent fragmentation - Only for compatibility of Market Apps?
» Select all possible data types
— Required much work
— But it's easier to subtract than to add
— Still have an issue that only a part of data types are support depending on models

GENIVI

APIls must be very flexible to absorb variety

U Define as many data types as possible to prevent fragment
= Need to gather OEM requirements as much as possible

4 Allow OEMs much freedom to maintain their policy
= A few mandatory data types
» Most of data types need to be optional

O Consider flexibility of interface
= Minimum number of common methods to support various data types
» |ess structured interfaces to absorb changes depending on OEMs

Overall IVIArchitecture-for. Vehicle Data AP -
GENIVI S == SN

Layered architecture according to characteristics of vehicle network

a \ [] N
Web Runtime
Native || WebApp |
Apps 1 Venicle API
[Vehicle Plug-in] | Q Various ways to implement it
_ J L 1 J =
! IPC Q IPC should cover both web and native apps
g 1] O Gateway to vehicle network for Apps
_ » Broadcast updates of values
Vehicle Network Manager = Keep the latest values
» Message encoding/decoding
- J
(N\
Vehicle Network Stack O Commercial solution is usually used
: g » Full tool chain — simulation, monitoring, automatic code-
Vil e Ntk [Briier generation to apply the change of message database
. J -

IVI Layered Architecture 9

GENIVI ——
GENIVI has full Web Vehicle API and implementation

O Collected opinions to define the types of supported data
= GENIVI has over 168 member companies including 11 OEMs
= To reflect the realistic requirements, OEM survey was conducted

O Total 9 groups and 129 data types are defined

= Vehicle Information (7) = Vision System (11)

= Running Status (26) = Parking (4)

= Maintenance (8) = Climate/Environment (29)
» Personalization (20) = Electric Vehicle (8)

= Driving Safety (16)

=>» 9 groups are defined as 9 Interfaces

= 2 methods(get/set) are defined to access all data as the unified way
= getSupportedTypes() method is defined

Web Vehicle API-ProjectinGENIVI

10

-

l.il API Description — ComWe

GENIVI i
O All interfaces for data exchange are defined to inherit VehicleEvent interface.
O All vehicle data belong to a type of VehicleEvent and can be accessed as an

attribute of that.

[NoInterfaceObject]
interface VehicleEvent : Event {};
interface RunningStatusEvent : VehicleEvent {

readonly attribute unsigned short speedometer;
readonly attribute unsigned short? engineSpeed,;

I
0 get/set/getSupportedEventTypes can be accessible via Vehiclelnterface

[NoInterfaceObject]
interface Vehiclelnterface : EventTarget {
void get(VehicleEventType type, VehicleDataHandler handler, ErrorCallback errorCB);
void set(VehicleEventType type, VehicleEvent data, SuccessCallback successCB, ErrorCallback errorCB);

VehicleEventType[] getSupportedEventTypes(VehicleEventType type, boolean writable);
Ji

11

\

O Well-structured Interface
= Some data have relations to others; these produce a type of data structure
= Especially, a Setting method requires a set of attributes at a time
= Usually, these are defined as a structured data types - Interfaces
= Good for Clarity. But flexibility is inhibited

Interface A _1 : Event {
attribute A_1_a;
| | attribute A_1 _b;
Al A 2 attribute A_1 _c;

}

A1l a Alb Alc Interface A : Event {
attribute A_1;
attribute A_2;

}

12

\

API Description = Multipl@W (2/3)

O Less structured interface for flexibility
» Realdata:A 1 a,A 1 b,Al1cAZ?2
= Virtual type: A,A_1
= Special attribute "Type" is used as an ID to identify the intended type and the range of validity

of data.
Interface A : Event { L
A . const Type A="A";
attribute Type; L
| . const Type A 1 ="A 1%
| | attribute A_1_a; constTvoe A 1 a="A 1 a"
Al A2 attribute A_1_b; YPEA - T
— — . - const TypeA 1 b="A 1 b";
attribute A_1_c; . .
| | . - const TypeA 1 c="A 1 c";
attribute A_2; o
A1la Alb Alc) ~ const Type A_2 ="A_ 2"

13

\

0 Handling multiple data at a time (cont’'d)
» Example code

function handlelnterfaceA(objA) { ‘ T |
if (objA.type =="A_1"){ A_1 A2
console.log("value A_1 a="+0bjA.A 1 a); /I It's valid. [} |
console.log("value A_1 b ="+objA.A 1 b); //It's valid. Ada] [AlP] [Alc
console.log("value A_1 ¢ ="+0objA.A_1 c); /I It's valid.
console.log("value A_2 ="+0bjA.A_2); Il It's possible but the value is invalid in our rules.
}
else if (objA.type =="A_2") {
console.log("value A_2 ="+0bjA.A_2); /I It's valid.
}
}

14

GENIVI

O Tire pressure status in MaintenanceEvent interface

interface MaintenanceEvent : VehicleEvent {
const VehicleEventType MAINTENANCE = "maintenance”;
const VehicleEventType MAINTENANCE_TIREPRESSURESTATUS = "maintenance_tirepressurestatus”;
const VehicleEventType MAINTENANCE_TIREPRESSURESTATUS_FRONTLEFT = "maintenance_tirepressurestatus_frontleft";
const VehicleEventType MAINTENANCE_TIREPRESSURESTATUS_FRONTRIGHT = "maintenance_tirepressurestatus_frontright";
const VehicleEventType MAINTENANCE_TIREPRESSURESTATUS_REARLEFT = "maintenance_tirepressurestatus_rearleft";
const VehicleEventType MAINTENANCE_TIREPRESSURESTATUS_REARRIGHT = "maintenance_tirepressurestatus_rearright";
const unsigned short TIREPRESSURESTATUS_NORMAL = 0;
const unsigned short TIREPRESSURESTATUS LOW = 1;
const unsigned short TIREPRESSURESTATUS_HIGH = 2;

readonly attribute unsigned short? tirePressureStatusFrontLeft; Capltal |Zat|0n Styles
readonly attribute unsigned short? tirePressureStatusFrontRight;
readonly attribute unsigned short? tirePressureStatusRearL eft; PaS.CaI case,
readonly attribute unsigned short? tirePressureStatusRearRight; Attribute—> Camel Case
Ji
Maintenance
I
| | |
odometer transmissionQilLife “e tirePressureStatus
|
I [I [
tirePressureStatusFrontLeft tirePressureStatusFrontRight tirePressureStatusRearlLeft tirePressureStatusRearRight

15

-

i API-Description—Exampte (2/6)

GENIVI e

O Getting a single vehicle data
» |et’s get the tire pressure status for the front left tire and notice the status to the driver
= Call the get function with a callback function (handleVehicleData)

vehicle.get(‘maintenance tirepressurestatus frontleft’, handleVehicleData, handleError);
function handleVehicleData(data) {
if (data.tirePressureStatusFrontLeft == 0) {
alert(‘Tire pressure status (front-left) is normal.’);
} else if (data.tirePressureStatusFrontLeft == 1) {
alert(‘Tire pressure status (front-left) is low.’);
} else if (data.tirePressureStatusFrontLeft == 2) {
alert(‘Tire pressure status (front-left) is high.’);

}

16

O Getting multiple vehicle data
» |et’s get tire pressure status for all tires simultaneously
= |n the previous way, you have to get the status of each tire.

vehicle.get(‘maintenance tirepressurestatus frontleft’, handleVehicleData, handleError);
vehicle.get(‘maintenance tirepressurestatus_frontright’, handleVehicleData, handleError);
vehicle.get(‘maintenance tirepressurestatus rearleft’, handleVehicleData, handleError);
vehicle.get(‘maintenance tirepressurestatus rearright’, handleVehicleData, handleError);
function handleVehicleData(data) {

if ((data.tirePressureStatusFrontLeft I= 0) || (data.tirePressureStatusFrontRight = 0) ||

(data.tirePressureStatusRearLeft |= 0) || (data.tirePressureStatusRearRight != 0)) {
alert(‘Check tire pressure.’);

= However, with the upper level type, the code becomes quite simple.

vehicle.get(‘maintenance_tirepressurestatus’, handleVehicleData, handleError);

17

|'i I APl Description-—Exam (4/6)

GENIVI

0 Adding event listener(s)
» |Let’'s add an event listener to monitor the tire pressure status for the front left tire.

vehicle.addEventListener(‘maintenance tirepressurestatus frontleft’, handleVehicleData, false);

= Also, you can use the upper level type to add multiple listeners.

vehicle.addEventListener(‘maintenance tirepressurestatus’, handleVehicleData, false);

= A callback function (handleVehicleData) is called whenever any of tire pressure status is

changed.

18

APl Description-—Exampte (5/6)
‘K%\ -

O Setting a single vehicle data
= Assume that driver seat position can be set in this vehicle.
» |et’s set the driver seat position for recline seatback.

interface PersonalizationEvent : VehicleEvent {
const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION = "personalization_driverseatposition";
const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION_RECLINE_SEATBACK =
"personalization_driverseatposition_reclineseatback";
const VehicleEventType PERSONALIZATION_ DRIVERSEATPOSITION_SLIDE = "personalization_driverseatposition_slide";
const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION_CUSHION_HEIGHT = "personalization_driverseatposition_cushionheight";
const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION_HEADREST = "personalization_driverseatposition_headrest";
const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION_BACKCUSHION = "personalization_driverseatposition_backcushion";
const VehicleEventType PERSONALIZATION_DRIVERSEATPOSITION_SIDECUSHION = "personalization_driverseatposition_sidecushion”;
readonly attribute unsigned short? driverSeatPositionReclineSeatback;
readonly attribute unsigned short? driverSeatPositionSlide;
readonly attribute unsigned short? driverSeatPositionCushionHeight;
readonly attribute unsigned short? driverSeatPositionHeadrest;
readonly attribute unsigned short? driverSeatPositionBackCushion;
readonly attribute unsigned short? driverSeatPositionSideCushion;

19

e

API-Description — Exampte (6/6)

O Setting a single vehicle data
= Create an object (obj) and add an attribute in the ob;j.

var obj = new Object();
obj.driverSeatPositionReclineSeatback = 0;
vehicle.set(‘personalization driverseatposition_reclineseatback’, obj, handleSuccess, handleError);

O Setting multiple vehicle data
= |et’s set all driver seat position.
= Just add attributes to the obj and use the upper level type.

var obj = new Object();

obj.driverSeatPositionReclineSeatback = 0;

obj.driverSeatPositionSlide = 0;

obj.driverSeatPositionCushionHeight = 0;

obj.driverSeatPositionHeadrest = 0;

obj.driverSeatPositionBackCushion = 0;

obj.driverSeatPositionSideCushion = 0;

vehicle.set(‘personalization driverseatposition’, obj, handleSuccess, handleError);

20

GENIVI

O Pros

= Various data types are supported in accordance with GENIVI members
Seamless way of access for all data types via minimum APIs and interfaces
Flexibility for various supported types

Various granularity is possible

Easily modifiable to fit OEM’s own purpose

O Cons

= New way for multiple access might be unfamiliar

— Especially, when an event handler is registered to listen a group 1D, leaf node events are
fired to it.

» Data is exchanged as a unified structure - tens of bytes overhead

= GENIVI Web Vehicle APl is still in progress
= Hope to make it better to reflect many other opinions

21

3 GENIVI-Reference Imple\m{cr\lo(n(ilét) S
GENIVI = - R

— - . i

Composition of GENIVI Reference Implementation

p : N » License is MPL (Mozilla Public License) v2.0
Web Runtime = Source code is available in the GENIVI git
Sample HTML Page = Migration to OSS is in progress
Vehicle API]
Vehicle Plug-in = Directory Structure
\ 1 J
IPC
(D-Bus)
v script
é)

— vehiclepataSimulator
— vehicleNetworkAdapter

Vehicle Network Adapter I L plugin

Vehicle Data
Simulator
(on behalf of
Vehicle Bus)

L4
-

|iii GENIVI-Reference Implafwm) —

GENIVI — : ~—

How to use it?

O Download
= Currently only available to GENIVI members
$ git clone https://git.genivi.org/srv/git/web-api-vehicle

O Build and Install
= Script files are provided
$./script/build-all.sh

O Run
» Need to execute 3 Apps separately
$./bin/VehicleNetworkAdapter &
$./bin/VehicleDataSimulator
$ google-chrome ./html/index.html (Need to open html on browser)

VIN* — Vehicle Identification Number (ISO 3779)
WMI** — World Manufacturer |dentifier 23

GENIVI-Reference Implementation (3/4)

Screenshot from run-time

1 Made as simple as possible rather than looking nice
» To help understanding easily from the source code
» To let developers test a certain feature

Vehicle Data Simulator

Running Status Personalization Driving Safety Climate Environment |

@ & 2 ‘_‘ file:///nome/jsbach86/projects pi-vehicle/htmlfindex.html
Vehicle Information Maintenance
World Manufacturer ID Send Odometer Send
Web API for Vehicle Data Reference Implementation Vehicle 1D Number Send Transmission Oil Life Level False o| sens |

'VEHICLE DATA DISPLAY VEHICLE DATA CONTRO Viehicle Type Sedan | | Send | Trarsmission Ol Temp Send

Tvpe Attribite Value Type Attibute Value DoorTypetsthow | Send Brake Fluid Level Fakse «| send |
World Manufacturer ID NOT_AVAILABLE T 5
) anguage Engiish
- o - . Door Type 2nd Ror Send i g -
Vehicle 1D Number NOT_AVAILABLE e W 4 Washer Fluid Level Fase | Send |

Measurement System True 2 " .
Vehicle Type NOT_AVAILABLE - . - . Door Type 3rd Row Send Malfunction Indicator Lamp Fake v | Send |
1st Row NOT_AVAILABLE liDrivegy Fuel Type Gasaline - | Send | Battery voliage s
Vehicle Door Type 2nd Row NOT_AVAILABLE Mirror Passenger . P Ao | Send |
L J L J ransmission Gear Type - e Battery current Send

Information 3rd Row NOT_AVAILABLE !

Fuel Type NOT AVAILABLE lalasidey| Wheel Info Radius Send Tire Pressure Front Left Send

Slide /I i by

Transmission Gear Type NOT_AVAILABLE Stearing Whee! L | Wheel Info Track Send Tire Pressure Front Right Send

Position
Wheel | Radus NOT_AVAILABLE L [Tire Pressure Rear Left Send

Information Track NOT_AVAILABLE
Vehicle Power Mode NOT_AVAILABLE | Driving Mode | | comfort v Tire Pressure Rear Right Send
Speedometer NOT_AVAILABLE Recline Tire Pressure Status Front Left ~ Normal = | Send |
Seatback
Engine Speed NOT_AVAILABLE - - Tire Pressure Status Front Right Normal - | Send |
Mileage NOT_AVAILABLE [side | a N)
y Tire Pressure Status Rear Left Normal v| send |
TripMeter1 | Average Speed | NOT_AVAILABLE e) | |
Fuel Driver Sear || L Heat | V h I Tire Pressure Status Rear Aight Normal | send
Consumpin | NOT-AVAILABLE oo enicie
b '] | Headrest
Mileage NOT_AVAILABLE Personalization 5 -
o Network
TripMeter2 | AVerage Speed | NOT_AVAILABLE oy W r
Fuel - -
Consumption | NOT_AVAILABLE — d a t e r =
Transmission Gear Status. NOT_AVAILABLE (CEsongy mn p N -
_ Status Messape I\.alue Tirne
Cruise Control ‘ Status. NOT_AVAILABLE Reciine
Seatback
Cruise Control ‘ Speed NOT_AVAILABLE L J
Wheel Brake NOT_AVAILABLE [side |
Head NOT_AVAILABLE . J
Cushion
High Beam | NOT_AVAILABLE oassonger seat || L HEO |

Sample HTML Page Vehicle Plug-in J«—F—=— r— Vehicle Data Simulator

24

—

\

Simple Demonstration

25

How to standardize Web Venhicle API successfully?

O Flexibility
» Vehicle APl depends on rigid factors such as vehicle network protocol and OEM’s
policy

O Generality
= Should be fit for many OEM’s requirements
= Limited coverage will cause additional work and fragmentation, which make it less
meaningful

O Timing
= Web Vehicle API needs to be standardized very soon
= Many OEMs are now working on it in their own way
= As time goes on, it will be harder to convince OEMs to adopt it

26

Any Questions?

27

